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1. Introduction

Seeing and imaging very small things have not only fascinated humans ever since we

first opened our eyes, but is also the source of some of the greatest scientific break-

throughs. Discoveries such as the existence of cells, bacterias and DNA as well as our

fundamental understanding of the particles that make up the universe all originate in

this need.

How small things that are visible to us is fundamentally limited to half of the wave-

length used to probe the sample and with visible light we can therefore not see things

smaller than 200 nm. For this reason, X-rays with wavelength down to 1 Å are very

attractive for imaging since this wavelength is short enough to see individual atoms.

This has been utilized for more than 50 years in X-ray crystallography to determine

the atomic structures of proteins and other macromolecules. Since X-rays interact

very weakly with matter, many billion identical proteins are assembled to a crystal

which enhances the scattered signal enough to permit structure determination.

X-ray crystallography has been an incredibly successful method with over 70000

structures solved. Its greatest weakness is however the requirement for the protein

to be crystallized. The crystallization process is often hard and in many cases even

impossible, which means that we are blind to the structure of any protein or macro-

molecule that can not be crystallized.

Free-electron lasers, a new type of light source might be the key to solve this prob-

lem. They produce X-ray pulses less than 100 femtoseconds long and with a peak

brilliance 10 billion times higher than any previously existing X-ray source. This kind

of intensity can produce strong enough scattering to allow imaging even from a sin-

gle molecule. The extreme amounts of energy deposited in the molecule will rapidly

turn it into a plasma and the sample will be destroyed, but the pulses delivered by

the free-electron laser are however short enough to outrun this damage process. The

protein will thus be damaged after the entire pulse has passed and the diffracted light

will correspond to the undamaged protein. This principle is called diffract and destroy
and was first proposed in [37].

In 2005, FLASH, the Free-electron LASer in Hamburg, started operation as the worlds

first free-electron laser. FLASH only operates in the soft X-ray regime and it was

mainly built as a test facility to develop the technique. Even so, it did open for users

and has greatly advanced the field of coherent X-ray imaging[8].

Four years later, in 2009, the Linac Coherent Light Source (LCLS) at the Stanford

Linear Accelerator Center (SLAC) opened to users. LCLS was the first hard X-ray

source and has performed above expectations since, pushing many fields of science

forward as a result[50][9].
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In this thesis, I aim to present recent applications of both FLASH and LCLS that have

been advancing our understanding of biology as well as the methods for coherent

imaging. It includes a description of the difficulties of imaging in three dimensions

and the methods to overcome them. Further, fundamental differences between single-

particle and crystallographic techniques are discussed and how the single-particle

techniques can make it possible to image a particle in all of its conformations.
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2. X-ray lasers

Powerful coherent X-ray sources are very important in many areas of science. Syn-

chrotrons have changed the world of structural biology and today we have access to

free-electron lasers capable of producing pulsed radiation with a peak brilliance 10

billion times higher than that of synchrotrons.

2.1 Undulator radiation

An undulator is a periodic array of opposing magnets that will cause a stream of rel-

ativistic electrons to wiggle due to the Lorentz force imposed on the moving charges.

The wiggling causes the electrons to emit radiation and each turn will cause more

radiation to be emitted. Since the electrons travel at relativistic speeds they will co-

propagate with the radiation and the intensity increases over the length of the undu-

lator. Undulators are used as the means of creating radiation in both third-generation

synchrotrons and free-electron lasers.

The wavelength, λ , of undulator radiation is a function of the undulator period λu
and the magnetic field strength of the undulator, Bo. The relation is described by the

undulator equation:

λ =
λu

2γ2

(
1+

1

2
K2 +(γθ)2

)
(2.1)

where θ is the divergence angle, K is called the undulator strength and is defined as

K =
λueB0

2πmec
(2.2)

and γ is the Lorentz factor from special relativity:

γ =
1√

1− v2/c2
(2.3)

2.2 Microbunching and SASE

In a continuos stream of relativistic electrons traveling through an undulator, the total

intensity of the radiated field scales linearly with the number of electrons since there

is no phase correlation between the fields emitted from the individual electrons. If

15



the electrons are distributed into microbunches spaced one wavelength apart they will

however all radiate in phase and the positive interference will cause the intensity of

the radiated field to scales as the square of the number of electrons.

The free-electron laser achieves microbunching through a process called SASE while

the synchrotron does not use microbunching at all which is the reason for the 1010 fold

difference in peak brilliance.

Microbunching can be achieved by introducing an electric field of the same wave-

length as the wiggling of the electrons λr =
λu
2γ2

(
1+ K2

2

)
. Electrons traveling to-

gether with the nodes of the field will be unaffected by it while electrons traveling

out of phase will feel a ponderomotive force that drives them towards the nodes. The

effect will create the microbunching required for the electrons to emit in phase.

The field emitted by the microbunches will add coherently to the field that is causing

the bunching and amplify it. This feedback mechanism causes an exponential increase

in bunching and emitted power. Because of this, even a very weak initial field can

be enough to cause a strong bunching. In the free-electron lasers active today no

external field is actually used, instead the self generated field from the first part of

the undulator is amplified and causes the microbunching. This process is called Self
Amplified Stimulated Emission, or SASE. The modes of the random radiation from

the beginning of the undulator that is close to the wavelength λr will be amplified

and cause microbunching. Several such modes can exist and the final spectrum of the

pulse might thus contain several energy peaks.

Since the initial field is the product of a stochastic process, SASE radiation is char-

acterized by a shot-to-shot intensity fluctuation and a small wavelength fluctuation.

Since the overwhelming majority of the radiation is emitted when the electrons are

distributed in microbunches the transverse coherence of the beam is very high which

is attractive for imaging applications.

2.3 Seeding

To avoid the problems caused by the stochastic start of the SASE process, several

techniques of seeding free-electron lasers are under development. Seeding here refers

to some process wich imposes a single mode that will then be amplified.

One promising technique is to apply an external field created by a high harmonic

generation laser source, see section 2.4. This attempt was tested successfully at the

Linac Coherent Light Source (LCLS) at SLAC.

Another proposed method is to seed the laser by bunching the electrons in advance.

This method is called Enhanced SASE or ESASE.

Both current and future free-electron lasers will likely make use of seeding and thereby

deliver more stable and more powerful X-ray pulses.

16



2.4 Optically driven X-ray lasers

Free-electron lasers are huge and expensive facilities and this is a strong motivation

to develop cheaper and smaller alternatives. High harmonic generation (HHG) is a

technique for generating pulsed x-rays that has been around for several decades. From

a powerful laser pulse in the visible spectrum, higher harmonics can be generated by

leading the pulse through for example a gas. Electrons in the gas will tunnel out from

the atom and when the driving field reverses they will recombine. The energy of the

released electron will be a multiple of the photon energy of the driving laser and thus

the photon emitted when the electron recombines will have higher energy and be a

multiple of the energy of the driving field.

HHG sources can produce equally short pulses as an FEL and of intensities about

three orders of magnitude lower than from FELs. They can not currently reach sub

nanometer wavelengths and are therefore not a viable alternative for many biological

applications. If this changes it could however be possible to have machines with

FEL like specifications in the basement of a lab, the development of HHG sources

is therefore of great importance for structural biology.
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3. Diffraction

3.1 Scattering from an inhomogeneous body

Diffraction from an inhomogeneous medium, assuming monochromatic light, is de-

scribed by the following equation.

U (s) (�r) =
∫

ρ
(
�r ′

)
U

(
�r ′

) ei2πs|�r−�r ′|
|�r−�r ′| d�r ′ (3.1)

Where U (s) (�r) is the scattered field at point�r, U (�r) describes the field in the medium

and s = 1
λ . ρ is the scattering potential defined as

ρ (�r,ω) = πs2
(
n2 (�r,ω)−1

)
(3.2)

where n is the refractive index of the material.

A full derivation of this formula can be found in [5].

3.2 The Born approximation

In equation 3.1 the variable U (�r) in the integrand is the total field inside the object, i.e.

U (�r) =U (i) (�r)+U (s) (�r), the total field is the sum of the incoming and the scattered

fields. Since the scattered field is present both inside and outside of the integral,

this equation is very hard to use for predicting diffraction. When the scattered wave

is much weaker than the incoming wave we can however make the simplification

U (�r)≈U (i) (�r) and thus remove U (s) from the integrand. Equation 3.1 then takes the

form

U (s) (�r) =
∫

ρ
(
�r ′

)
U (i) (�r ′) e2πis|�r−�r ′|

|�r−�r ′| d�r ′ (3.3)

This simplification is called the first-order Born approximation[5] and greatly simpli-

fies the equation. The approximation usually holds for viruses and smaller objects at

X-ray wavelengths and will be assumed for all the examples of diffractive imaging in

this work.

18



3.3 The Fraunhofer approximation

We will now assume that the extent of the diffracting object is much smaller than the

distance to the point�r. This will allow us to further simplify equation 3.3 into a form

which is very easy to work with. The region where this assumption is true is called

the far field. We start with defining the Fresnel number F as

F =
a2

rλ
(3.4)

where a is the extent of the scatterer and r is the length of�r. When F � 1 we are in the

far field[5]. That means that we can rewrite the last term in the integrand of equation

3.3.

e2πis|�r−�r ′|
|�r−�r ′| ≈ e2πisr

r
e−2πi�sout·�r ′ (3.5)

where �sout is a vector pointing in the direction of the outgoing light and of length
1
λ . We have used the fact that the denominator is dominated by�r and we have also

rewritten the exponent: ∣∣�r−�r ′∣∣≈ r−�sout ·�r ′ (3.6)

Substituting this into equation 3.3 then gives

U (s) (�r) =
e2πisr

r

∫
ρ
(
�r ′

)
U (i) (�r ′)e−2πi�sout·�r ′d�r ′ (3.7)

We now assume U (i) to be a plane wave of amplitude U0 and directionality given by

�sin:

U (i) (�r ′)=U (i)
0 e2πi�sin�r ′ (3.8)

Equation 3.7 then becomes

U (s) (�r) =
e2πisr

r

∫
ρ
(
�r ′

)
U (i)

0 e−2πi(�sout−�sin)·�r ′d�r ′ =U (i)
0

e2πisr

r

∫
ρ
(
�r ′

)
e−2πi�s·�r ′d�r ′

(3.9)

where�s =�sout −�sin.

This is a really interesting result since equation 3.9 is similar to the well known Fourier

transform[48].

f̂ (�s) = F{ f (�r)}(�s) =
∫

f (�r)e−2πi�s·�rd�r (3.10)

This leads to an important conclusion.

In the far field, the scattering of a plane wave is proportional to the Fourier transform
of the scattering potential evaluated at the vector�s.

This is expressed in the following equation.

U (s) (�s) =U (i)
0

eikr

r
F{ρ (�r)}(�s) (3.11)
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In the rest of this thesis we will be assuming that equation 3.11 accurately describes

diffraction. This implies that we are assuming the Born approximation, that we mea-

sure the diffraction data in the far field and that incoming waves are plane waves.

3.4 Scattering factors

So far we have described the diffracting material in terms of its refractive index n.

Another common way to describe the same properties is by the scattering factors of

the material[13]. They relate to the diffractive index of the material as

n = 1− 1

2π
Nr0λ 2 ( f1 + i f2) (3.12)

where r0 is the classical electron-radius and f = f1 + i f2 is the scattering factor. The

scattering factor describes the scattering from a single atom in relation to the scattering

from a free electron. This way of quantifying diffraction is therefore more useful

when working with atomic positions, such as protein structures, or in general when

the atomic composition is known. Tables of scattering factors exist for most elements

at many X-ray wavelengths[24].

The real part of the scattering factor, f1, describes the strength of scattering while the

complex part of the scattering factor, f2, describes the absorption of the material. f2

can be related to the attenuation length of the material in the following way.

μ = 2nr0λ f2 (3.13)

where n is the number of atoms in a unit volume. The attenuation length is the distance

into a material where the intensity of an incoming wave has dropped to half.

3.5 The Ewald sphere

The Fourier transform of a three-dimensional object is also three dimensional, but

the diffracted signal is only two dimensional. The part of three-dimensional Fourier

space that is sampled by a diffraction experiments is given by the vector�s =�sout −�sin

introduced in equation 3.9.

Since �sin is constant and �sout is of fixed length, the vector �s will cover a sphere in

diffraction space (see figure 3.1) and the sphere will intersect the origin at forward

scattering. This sphere is called the Ewald sphere[19]. In the experiments in this

thesis, only a small part of the diffraction angles around forward scattering is sampled

by the detector. In that case, this section of the sphere can be approximated as a plane

that cuts the Fourier space through the origin.

A back Fourier-transform of the diffracted wave will then, according to the Fourier-

slice theorem[7], give a projection of the samples scattering potential.
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Figure 3.1. The momentum transfer �s =�sout −�sin will always reside on a sphere of radius 1
λ

that intersects the origin. This sphere is called the Ewald sphere.
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4. Phase retrieval

4.1 The phase problem

As described in section 3.3, the diffracted wavefront can often be described as the

Fourier transform of the scattering potential of the object, sampled at the Ewald

sphere. The value of the Fourier transform is a complex number and the complex

amplitude corresponds to the amplitude of the electromagnetic wave and the complex

argument (or phase) corresponds to the phase shift of the wave.

In a flat Ewald geometry, i.e. when the scattering angle is small, we can determine the

projection image of the sample from the scattered wave. This is done by performing

a back Fourier transform of the scattered wave. It is however impossible to directly

measure the phase of an X-ray wavefront, the detector only records the intensity of

the wave which is given by the square of the amplitude.

I (�s) = A(�s)2 = ρ̂ (�s) ρ̂ (�s)∗ (4.1)

where ρ̂ (�s) is the Fourier transform of the scattering potential ρ (�r) and A(�s) is the

amplitude of the scattered wave:

A(�s) = |ρ̂ (�s)| (4.2)

Since we don’t know the phases, there is in general no direct way of recovering an

image of the object. This is called the phase problem and is a well known issue in

diffractive imaging. To solve it, some additional information is always required to

compensate for the information lost with the phases.

4.2 Oversampling

One of the strengths of single-particle diffractive-imaging is that there is an appealing

solution to the phase problem. The additional information in this case, is that the ex-

tent of the particle is limited. In this section we will outline how this extra information

solves the phase problem and quantify how much information is needed.

The Shannon sampling theorem (sometimes called the Nyquist-Shannon sampling-

theorem) states that A function that contains no frequencies higher than B, is com-
pletely determined by its values at a series of points spaced 1

2B apart.[45]
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In single particle imaging, the diffracted signal is band-limited since the particle has a

finite size. Let us label the particle diameter dp, the band limit will then be dp/2. This

implies, according to Shannon, that the diffracted signal will contain no frequency

higher than dp/2 and can be fully described by its value at points spaced 1/dp apart.

This distance defines a critical pixel density required to recover the object if we were

detecting the phases as well. Since our samplings doesn’t contain the phases a 1
dp

sampling is however not enough to recover the sample. If we can sample at twice as

many points we will however in general have collected enough additional information

to compensate for the lack of phases.

This was realized by David Sayre[43] in 1952 and although at his time the applications

were rather artificial, it has gained immense importance in single particle imaging

today where oversampling is easily achieved simply by making sure that the pixels of

the detector cover a small enough angle.

This method, called the oversampling method is used in almost all applications of

single particle X-ray imaging today. While the method describes the requirements

for phase recovery and thus the necessary experimental conditions, it only states that

recovery is theoretically possible and doesn’t outline the way to do it. The most com-

mon way to solve it in practice is by a family of optimization techniques called convex
optimization. They are the subject of the next section.

4.3 Convex optimization

The phase problem in single particle imaging can be described as a search for an object

that fulfills two constrains. The first constraint is given by the experimental data, the

amplitudes of the Fourier transform of the object should match the square root of the

measured intensities. This constraint is referred to the Fourier-space constraint. The

second constraint is given by the oversampling discussed above. In real space, this

constraint is simply a limit to the size of the particle. The real space can therefore be

split in two regions, one region where the object is allowed to have density and one

region that must be empty. The part that allows density is usually called the object’s

support and the constraint imposed by it is called the real-space constraint.

Figure 4.1 shows a schematic drawing of the set of all objects fulfilling the Fourier-

space constraint together with the set of all objects fulfilling the real-space constraint.

The solution will fulfill both of the constraints and is found where the two sets inter-

sect. The figure also hints at a simple technique to find the solution. We note that

projecting onto one of the sets in the figure will always bring us closer to the solution

and interchangeably projecting on the two sets will eventually bring us all the way to

the solution. This optimization technique is called error reduction (ER) and comes

from a family of techniques called convex optimization.
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Figure 4.1. The solution to the phase problem has to fulfill both the real-space constraint and

the Fourier-space constraint. The right figure shows how repeated projections onto the two sets

will bring us to the solution.

The projections on the Fourier-space constraint (Pf ) and on the real-space constraint

(Pr) used above can be expressed mathematically as

Pf ρ (�r) =F−1
√

I (�s)e−iarg(Fρ(�r)) (4.3)

Prρ (�r) =

{
ρ (�r) if�r ∈ S
0 if�r �∈ S

(4.4)

where S is the support and I (�s) are the experimentally measured intensities.

In terms of these projectors, one iteration of the ER algorithm is given by

ρn+1 (�r) = PrPf ρn (�r) (4.5)

i.e. first projecting on the Fourier-space constraint followed by a projection on the

real-space constraint.

The seed for the algorithm is normally an object created by applying random phases

to the experimental amplitudes.

The following list explains the implementation of the algorithm in plain text.

1. Assign a random phase to every pixel of the diffraction image.

2. Inverse Fourier transform the pattern.

3. Set all pixels outside the support to zero.

4. Fourier transform.

5. Replace the amplitudes with the experimentally measured amplitudes, but keep

the phases.

6. Repeat from step 2

A third way to describe the algorithm is by describing the effect of one iteration on

real space.

ρn+1 (�r) =

{
Pf ρn (�r) if�r ∈ S
0 if�r �∈ S

(4.6)
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The pixels in the support are replaced with the last model after applying the Fourier-

space constraint while the pixels outside of the support are set to zero. The above list

and equations 4.5 and 4.6 ar all different ways to think of the same algorithm.

We note that the algorithm will only work if the two sets are both convex since that

is what guarantees that the projections will always bring us closer to the solution. If

the sets are non-convex, local minima might exist that will be stable points for the

algorithm.

Figure 4.1 shows the two sets of the constraints as blobs but what do they actually

look like, and are they convex? Before looking into this, we need the definition of a

convex set, which is given by: a set is convex if for any two points in the set, all points
along a straight line between them (called the convex combinations of the points) are
also in the set.[42]

Objects fulfilling the real-space constraint can all have different values along the pix-

els inside the support while the pixels outside the support are all zero. Any convex

combination of two such objects will obviously still have only zeros outside the sup-

port and will thus still fullfil the real-space constraint. The set is therefore convex and

has the shape of a hyperplane.

Now consider two different objects fulfilling the Fourier-space constraint, they both

have the same amplitudes but different phases. Any convex combination of these

objects will have a lower amplitude, and since the amplitude is different, the convex

combination will not fulfill the Fourier-space constraint. The set of objects fulfilling

the Fourier-space constraint is therefore not convex.

The fact that the Fourier-space constraint is not convex implies that the ER algorithm

might not work very well since it is unable to escape local minima. Later in this

section we will describe modifications of the ER algorithm that partially solves this

issue.

4.3.1 Error metrics

To monitor how well the current model complies with both sets we can measure the

distance from it to the respective set. This introduces two error metrics, the real-space
error, Er, and the Fourier-space error, E f [30].

The real-space error is defined as

Er = |Prρ −ρ|=
(

∑
i

ρ2
i

) 1
2

(4.7)

The Fourier-space error is defined as

E f =
∣∣Pf ρ −ρ

∣∣=
(

∑
i
(Ai − ρ̂i)

) 1
2

(4.8)
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The error associated with a certain set will obviously be zero after projecting on that

set. Therefore the real-space error is calculated after applying the Fourier-constraint

and the Fourier-space error is calculated after applying the real-space constraint. We

also note that at a perfect solution both of these errors will be zero. Since noise is

usually present in diffraction data, perfect solutions are however rare which means

that the two sets don’t really intersect. We will then simply be searching for the point

that minimizes the two errors metrics.

The name of the error-reduction algorithm actually refers to the fact that every iteration

will reduce both of these errors with every iteration. This feature is also what makes

it impossible for it to escape from a local minimum. We will now take a look at some

algorithms that overcome this drawback and are therefore more useful to real-world

problems.

4.3.2 The Hybrid Input Output algorithm (HIO)

The Hybrid Input Output (HIO) algorithm[21] has become one of the most used al-

gorithms for singel particle phase recovery. The workflow is similar to that of the

error-reduction algorithm with the only difference being a different real-space projec-

tion. The update is instead

ρn+1 (�r) =

{
Pf ρn (�r) if�r ∈ S
ρn (�r)−βPf ρn (�r) if�r �∈ S

(4.9)

.

The reason for the change was to speed up the usually very slow error-reduction algo-

rithm by means similar to a negative feedback. In addition to making it faster than the

ER algorithm this also gives it the ability to escape from local minima.

The parameter β in the algorithm determines how much negative feedback is added

and should be in the range [0,1]. A lower feedback gives a slow algorithm that takes

small steps but is less likely to miss a minimum but also more likely to spend much

time in local minima. A higher β gives a fast algorithm that can quickly cover large

parts of the search space and is more likely to not even notice local minima. The

downside of a high β is the risk of escaping or totally missing even the global mini-

mum.

HIO has the slightly counter-intuitive property that if the current minimum is not per-

fect, i.e. the two sets don’t intersect, it will eventually escape[35]. This means that

local minima are less of a problem, however, in the presence of noise, even the true

solution will not be perfect and the algorithm will, given enough time, escape from

it. A common solution to this problem is to introduce a threshold on the error metrics

and stop the algorithm when it is reached, then finish with a few iterations of error

reduction to refine the solution to the best point of the current minimum. Another

solution is to run the algorithm for a long time and afterwards select the iterate that

had the lowest errors as the starting point for the ER refinement.
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4.3.3 The Relaxed Averaged Alternating Reflections algorithm
(RAAR)

Another common phasing algorithm is the Relaxed Averaged Alternating Reflectors

(RAAR) algorithm [29]. Together with HIO and ER it makes up more than 90% of

the author’s usage.

Its behavior can be described as an intermediate between error reduction and HIO.

It doesn’t escape all minima, but can escape shallower ones. When the data is of

high quality it usually finds the solution much faster than HIO and stays in the true

minimum but if the true minimum is only slightly deeper than some local minimum it

will struggle much more than HIO.

The update is described by the following equation, where β plays a similar role as for

HIO.

ρn+1 (�r) =

{
Pf ρn (�r) if�r ∈ S and ρ (�r)≥−(1+β )Pf ρ (�r)
βρn (�r)− (1−2β )Pf ρn (�r) otherwise

(4.10)

4.3.4 Other algorithms

Many other phasing algorithms exist and are in use. Most of them are also based on

the idea of convex optimization and, just like HIO and RAAR, also differ from ER

only in how the real-space constraint is applied. The following are three of the more

common ones.

• Difference map[17]

• Saddlepoint optimization[33]

• Hybrid projection reflection[2]

A few algorithms are based on slightly different ideas. One example is the charge

flipping algorithm that doesn’t use a support but instead treats low-density regions in

real-space different from high-density regions[38].

Another algorithm that doesn’t use a support is called Espresso[31]. It assumes that

the object being recovered is sparse and the real-space constraint is therefore replaced

with a sparsifying operation. A generalization of the algorithm also works for objects

that can be transformed to become sparse, such as an object having several patches of

flat densities.

4.3.5 Additional constraints

The only information about the sample that we have used so far is the size limit.

Sometimes we do however know more and this extra information can really aid the
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algorithm. The two most common such extra constraints are the reality constraint and

positivity constraint.

The real part of the scattering factor is often much larger than the imaginary part and

the object can, in such cases, often be assumed to be purely real. This can then be

enforced, usually by simply setting the complex component to zero after applying the

real-space constraint.

One caveat here is that the algorithm becomes sensitive to badly centered diffraction

patterns since a translated pattern will result in the object being multiplied with a

phase ramp. A remedy for this when the misalignment is small is to replace the reality

constraint with a phase ramp constraint. We then project the phases onto the best-

fitting ramp instead of projecting them to the real axis. This method can even handle

cases where the misalignment is less than one pixel. If the phase shift across the object

is larger than a full turn the problem of fitting the ramp becomes computationally much

harder, and the implementation of the phase ramp constraint in Hawk (see section 4.5)

therefore assumes the ramp to be linear, thus requiring the misalignment to be small.

The positivity constraint works in the same way as the reality constraint and since

negative scattering factors don’t exist it can usually be enforced. Only when the model

of diffraction doesn’t hold, for example when the Born approximation is not satisfied,

is it sensible not to use it. Then, the faults of the model might manifest themselves

as negative densities and a positivity constraint might make the reconstruction harder

and the result worse.

4.3.6 The Phase Retrieval Transfer Function

In optical systems a transfer function (OTF) is the Fourier transform of the point-

spread function which is the shape a delta function obtains after passing through the

system. In other words, an image will be convoluted by the point-spread function

when passing through the system. Of particular usefulness is the modulation transfer

function (MTF) which is the absolute value of the transfer function. The radial average

of this function is often used to indicate the resolution of the system, where values

close to one means that the image is preserved at that resolution and low values means

that the image is distorted at that resolution.

The reconstruction process can also be thought of as such an optical system and its

effect on the reconstructed image can be described with a transfer function called the

Phase Retrieval Transfer Function (PRTF)1.

To calculate the PRTF, multiple reconstructions are performed using the same param-

eters but with different randomly chosen starting points. The PRTF is then calculated

1More precisely, what is usually referred to as the PRTF has an equivalent meaning as the MTF.

The corresponding OTF can also be calculated but is very rarely used
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by averaging the Fourier images and then normalizing with the amplitude:

f̂average =
∑n f̂ni

N
(4.11)

PRTFi =

∣∣∣∣∣ f̂average∣∣ f̂i
∣∣

∣∣∣∣∣ (4.12)

Where N is the number of repeats, f̂ni is the recovered value of the pixel i in Fourier

space at repeat n and the absolute value
∣∣ f̂i

∣∣ is the same for all repeats since it is given

by the experimental intensity. Just like the MTF, the PRTF describes how the Fourier

amplitudes have decreased, in this case from the averaging of phased diffraction-

patterns.

The back Fourier-transform of f̂average gives the average real-space reconstruction,

which is much more reliable than any individual reconstruction since the effects of the

starting phases have been washed out and only the features that are supported by the

data are left.

The phase retrieval is normally reliable for where we have strong signal and less re-

liable where the signal is weak. Since the diffracted signal tends to be stronger in

the central, low resolution, region we expect a PRTF with high values at low q that

drops towards higher q. One common way to quantify the resolution is to threshold

the radial average of the PRTF (also often referred to as the PRTF). The point where

it first drops below the threshold defines the resolution. In CXI, a threshold of e−1 is

commonly used but values ranging from 0.1 to 0.5 are also found. In this thesis we

have exclusively used the e−1 convention.

The resolution is usually expressed as the full-period resolution which is the inverse

of the amplitude of the Fourier-space coordinate �s where the PRTF drops below the

threshold. Full-period resolution is common in crystallography and is sometimes re-

ferred to as crystallographic resolution. Another common definition is the half-period
resolution which is half of the full-period resolution. This resolution corresponds to

the size of a pixel when Fourier space is cropped at the resolution limit and is therefore

often more intuitive.

The step of averaging and calculating a PRTF is an essential part of any reconstruc-

tion since it provides a way to judge the quality and resolution of the reconstruction.

It also provides the only standardized method of quantifying the resolution of a recon-

struction, and was done for all the reconstructions in this thesis. For an example of a

radially averaged PRTF, see figure 7.3.

4.4 Support recovery

Most phasing algorithms assume that the support is known, or in other words, that

the shape of the sample is known. Although sometimes our prior knowledge of the

particle is enough to estimate a decent support, this is not generally true.
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A common way to estimate the shape of the support of an unknown object is through

calculating the autocorrelation of the object, which is the objects cross-correlation

with itself:

a(�r) =
∫

ρ
(
�r+�t

)
ρ
(
�t
)∗

d�t (4.13)

The autocorrelation has a size that is twice as large as the size of the sample along

any direction. What makes it very useful to us is that it can be calculated from the

diffracted intensity alone, which can be shown through the convolution theorem.

a = F−1
{
F{ρ}F{ρ}∗}= F−1

{
A2

}
= F−1 {I} (4.14)

We can thus calculate the autocorrelation by simply inverse Fourier-transforming the

diffracted intensities and thereby get an envelope that is twice as large as the object.

4.4.1 The shrinkwrap algorithm

It is often important to have a tight support, i.e. one that closely resembles the shape

of the particle without giving it room to move around. This is especially true for

experimental data, and the autocorrelation method is then usually not good enough.

The most common way of handling this problem is to recover the support during the

reconstruction through an algorithm called shrinkwrap[32].

The name is borrowed from the type of plastic wrapping that shrinks when exposed

to heat and can thus be made to fit very tightly around objects. In the same way, this

algorithm can start with a very loose support and successively shrink it until it fits very

tightly around the actual shape of the object.

The idea is that when we start the reconstruction we don’t know the shape of the ob-

ject very well but as the reconstruction progresses we gain more knowledge about the

sample and can make a better estimate of the object. The shrinkwrap uses any phas-

ing algorithm such as the HIO or RAAR and regularly (usually every 20 iterations)

updates the support. The update is done in two steps:

1. A Gaussian blur is applied to the current real-space image.

2. A threshold is applied and all parts of the blurred image with densities higher

than the threshold is included in the new support. The threshold is usually

defined as a percentage of the maximum value.

The strength of the blurring, σblur, is usually decreased throughout the reconstruction.

The reason is that we don’t want to over-interpret the result from the first iterations

while, as we gain more confidence also in the higher resolution of the reconstruction,

we can use it to create a better support.

The shrinkwrap is usually good at excluding pixels from the support but not at includ-

ing new pixels, meaning that with time it will shrink and not grow. This is the reason

for its shrinkwrap like behavior and is also the reason for why the blurring is important
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since badly recovered parts of the image could otherwise cause parts belonging to the

object to be discarded from the support and probably never included again.

As stated earlier, the support was introduced as the required additional constraint to

compensate for the information lost with the phases. It seems risky to give up con-

trol of the support constraint and it begs the question of how the problem is actually

constrained when using the shrinkwrap algorithm. The answer is sadly not very clear

since there is no analytical analysis of the algorithm but it is empirically well tested

and has been showen to work in many cases. The lack of a solid understanding of the

limits of the shrinkwrap is still a weakness of the convex-optimization phase-retrieval

methods.

The thresholding in the shrinkwrap works very well for samples with sharp boundaries

since these are not very sensitive to the exact value of the threshold. This makes

the algorithm very suitable for example for reconstruction of objects created with a

Focused Ion Beam (FIB) which was also the type of sample used when developing

the algorithm. Most biological particles of interest such as cells and viruses also have

sharp boundaries and the shrinkwrap can be expected to work well for them. This is

however often not true for the projection images of these samples that are accessible

from single patterns, and can increase the difficulty of these reconstructions.

4.4.2 Variation on the shrinkwrap

One variation on the shrinkwrap that was used in many of the reconstructions in

this thesis is the constant-area shrinkwrap. The only difference compared to nor-

mal shrinkwrap is that the fixed thresholding is abandoned. Instead, the strongest part

of the blurred image is included up to the level where the support has a specific area.

Since the original shrinkwrap very rarely grows the support, it makes one attempt at

shrinking around the correct structure and, if it fails, continues to shrink all the way to

a one-point support. The constant area prevents this shrinking and the algorithm can

cover a large search space in a single run. It is therefore preferable if the problem is

hard.

If the area of the object is not known, it is common to slowly let the area decrease

during the reconstruction. When the area becomes smaller than the actual size of the

object, the error metrics will rise dramatically which gives a good target area for the

next run.

4.5 The Hawk software package

The Uppsala-developed Hawk package is the only open-source software for single-

particle diffraction analysis and is described in paper V. It includes the methods de-

scribed in this section and many more, and a rich library of utility functions combined
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with being open source makes it possible for any user to extend the software. Another

strength of Hawk is an efficient implementation in C and the ability to use Graphics

Processing Units (GPU) when available for very fast computation.

Hawk and its underlying libraries were used for all the reconstructions in this thesis.

4.6 Missing data

Most diffraction patterns from single-particle experiments lack data. Even in the best

case, a region in the center will have to be missing since the direct beam would oth-

erwise damage the detector. This is achieved by, for example, placing a beam stop

in front of the detector or by constructing the detector, or system of detectors with a

hole in the center that lets the direct beam through. Regardless of implementation,

this does however mean that data are lacking. In this section we will investigate what

consequences this has on the reconstructed image. See [23] and [40] for a description

of the detectors used at LCLS.

All algorithms mentioned here handle the missing data in the same way. When ap-

plying the Fourier-space constraint, the pixels with missing experimental amplitudes

retain their recovered amplitude, just like all pixels retain their phase. Thus, the miss-

ing amplitudes are recovered together with the missing phases.

We note, that the missing parts of Fourier space are completely unconstrained by

the Fourier-space constraint. Similarly, the real-space constraint only constrains the

area outside the support while the inside is unconstrained. A pressing question is

whether you can construct an object that is unconstrained by both the real and Fourier

constraint. This would be an object that fits inside the support and has a Fourier

transform that is zero outside of the missing-data region. Such an object could be

added to any solution without violating either the real-space constraint or the Fourier-

space constraint, and thus create an equally good solutions which creates an ambiguity

in the reconstruction. Such objects are said to be unconstrained.

Totally unconstrained objects don’t generally exist. What does exist are however

weakly constrained objects. Objects that have only a very small contribution outside

the support and outside the missing-data region. These objects will only influence the

real and Fourier errors slightly and if the level of noise in the pattern is large enough,

the algorithm might be insensitive to these small differences and the object will behave

as if unconstrained.

The silver bullet to this problem is to minimize the size of the missing-data region.

To do this, it is important to be able to predict how severe the problem is for a certain

experimental setup. This is done in the next section. Sometimes it is not possible

to completely eliminate the problem and then it’s even more important to be able to

quantify the effect well and possibly use additional constraints to solve it.
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4.6.1 Mathematical description of the problem

The Fourier transform is a linear transform and the discrete version of it can be de-

scribed by a matrix that we denote F. Every column in this matrix correspond to a

certain pixel in real space and every row correspond to a pixel in Fourier space. We

can rearrange the columns and rows to split the matrix into four submatrices based on

whether they lie inside or outside the support and inside or outside the missing data

region respectively. Equation 4.15 visualizes this split where S symbolizes the support

and M symbolizes the missing region and the bar denotes their inverses.

F=

⎛
⎜⎜⎝

FSM FS̄M

FSM̄ FS̄M̄

⎞
⎟⎟⎠ (4.15)

We define the problem as finding the object inside the support whose Fourier transform

gives the smallest contribution to the known-data region, i.e. we are searching for a

vector ρ that minimizes |FSM̄ρ|.
To solve this problem we are going to use a singular-value decomposition (SVD)[16].

The theory states that the matrix FSM̄ can be decomposed in the following way.

FSM̄ =UΣV † (4.16)

where Σ is a rectangular diagonal matrix and U and V are both unitary matrices. The

rows and columns are usually arranged such that the values of Σ, called the singular

values, are sorted in descending order.

Any column vector, Vi of the matrix V , also called a right singular vector, can be seen

as a potential input to the matrix FSM̄ and the output will be the corresponding column

vector Ui of the matrix U , called a left singular vector, scaled by the corresponding

singular value Σi. The smallest singular values correspond to the most weakly con-

strained objects, or weakly constrained modes.

Since V is unitary, the column vectors will be orthogonal to each other. Therefore,

the set of right-singular vectors corresponding to the most weakly constrained modes

will form an orthonormal basis set that spans a subspace where every vector is weakly

constrained.

A way to think of this is that we have several degrees of freedom in our reconstruction

that can not be found from the data alone. Figure 4.2 shows an example of such a

weakly constrained mode in 1D.

4.6.2 Efficient calculation

The matrix FSM̄ can be very large. The support is typically not larger than 10000

pixels for 2D reconstructions, but the known-data region is usually very large, often
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Real space Fourier space

Figure 4.2. If the support and missing data region (indicated by the vertical lines) are both

small enough it is possible to construct functions that are very weakly constrained by both the

real-space and Fourier-space constraints. The Gaussian in this picture is such an example.

above 1000000 pixels, and this makes the problem computationally very heavy. We

will now show that we can perform an equivalent calculation on the much smaller

matrix FSM .

The singular values of FSM̄ are also the square-root of the eigenvalues of FSM̄F†
SM̄[16]

and the right singular vectors are the corresponding eigenvectors. We can use the fact

that F is a unitary matrix i.e. FF† = E where E is the unit matrix. It is then also true

that

FSM̄F†
SM̄ +FSMF†

SM = E (4.17)

The eigenvectors of FSM̄F†
SM̄ can then be written in the following way:

FSM̄F†
SM̄Vi =Σ2

i Vi (4.18)(
E −FSMF†

SM

)
Vi =Σ2

i Vi (4.19)

FSMF†
SMVi =

(
1−Σ2

i
)

Vi = Σ′
i
2Vi (4.20)

This result means that we can calculate both the singular vectors and the singular val-

ues by working on the much smaller matrix FSM . The weakly constrained modes will

then instead be characterized by a strong singular value. More precisely the sought

after singular value can be calculated from the singular value Σ′
i calculated with the

efficient method as

Σi =

√
1−Σ′2

i (4.21)

4.6.3 Relation to noise

In the above calculation, we have treated every pixel of the diffraction pattern equally,

meaning that a contribution from a mode to one pixel is equally constraining as a

contribution to any other pixel. If we know the noise for each pixel we can obviously

34



Figure 4.3. The figure shows the experimental setup used for all experiments described in paper
VI. The sample is suspended on a thin membrane and the scattered light is reflected down to

the CCD detector. The role of the mirror is to split the diffracted light from the direct beam that

is let through a hole in the mirror.

do better since we know that a pixel with strong noise will constrain the mode less

than a pixel with weak noise.

Surprisingly, this assumption of equal noise is a fairly good approximation when the

noise is dominated by Poisson noise. The standard deviation of the noise is then given

by σI,i =
√

Ii +1 where Ii is the intensity in the ith pixel given in number of photons.

The amplitudes used in the reconstruction relate to the intensity as Ai =
√

Ii. Error

propagation of the standard deviation σI,i to the standard deviation of the noise in the

amplitudes gives

σA,i =
1

2

√
1+

1

A2
i

(4.22)

This shows that unless the intensity is very small, the noise is constant at 1
2

√
photon.

This result is relieving since a more proper handling of the effects of noise requires a

reweighing of the individual rows of FSM̄ which unfortunately means that the efficient

calculation described in 4.6.2 doesn’t work since that breaks the unitarity of F.

4.7 Reconstructing biological samples from
experimental data: Imaging of cells on solid
supports

In paper VI we used the techniques described in this section to perform some of

the first single particle X-ray imaging experiments of biological samples, at the free-

electron laser FLASH in Hamburg. The samples were suspended on a 20 nm thick

silicon-nitride membrane that was hit by a pulse from the FEL. The scattered light

was reflected down to the CCD detector by a graded multi-layer mirror. A central

hole in the mirror let the direct beam through, thus preventing it from damaging the

detector, see figure 4.3.
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Figure 4.4 shows a reconstruction of a Prochlorococcus marinu cell from the paper.

What looks like a hole in the center of the image is most likely a ruptured membrane

that caused some of the cell content to escape, leaving the rest of the cell sunken in.

This kind of damage was also seen in electron-microscopy (EM) images of the same

cell type and are probably caused by a long exposure to vacuum, the cells spent several

hours in the chamber before being imaged.

In addition to the Prochlorococcus marinu cell showed in figure 4.4, paper VI also

shows reconstructions of Synechococcus elongatus and Spiroplasma melliferum cells.

Even though no biologically relevant claims about the samples were produced in the

paper, the result was significant in showing that cells can be imaged by the diffract

and destroy technique.
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Figure 4.4. The figure shows a picture of the membrane with the cell taken with an optical

microscope (a) and the measured diffraction pattern (b). The recovered pattern (d) matches

closely the experimental one. The reconstructed image (c) has the expected dimensions but

shows sign of damages in its central region, probably from an being exposed to vacuum for

several hours. The PRTF (e) gives us a half-period resolution of roughly 80 nm.
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5. The giant mimivirus

5.1 Background

Mimivirus (Acanthamoeba polyphaga mimivirus) is one of the largest viruses known

today[26]. With a diameter of 450 nm the size is comparable to that of the smallest

living cells and its name is actually a short for microbe mimicking virus. The virus

has a pseudo-icosahedral capsid with a possible five-fold symmetry[49], but there is

no known symmetry of the internals of the virus.

The double-stranded DNA genome has 1.2 million base pairs[41] which is one of the

largest genomes found in any virus. It was the first virus found to have a larger genetic

complexity than some cellular organisms[11] and even contains central parts of the

protein translation apparatus. Studies of the mimivirus have sparked new debates

about the boundaries between viral and cellular life.

The capsid is covered by a layer of thin fibrils[49, 10] and the total size of the particle

including these fibrils is about 750 nm. The size and the fibrils make the virus im-

possible to study with crystallographic methods. The size also makes it hard to study

intact virus particles with EM because of the limited penetration depth of electrons.

This makes it a suitable target for demonstrating single-particle X-ray imaging.

5.2 Two-dimensional imaging of injected mimivirus
particles

In paper II projection images of mimivirus particles were reconstructed from single

diffraction patterns. In these studies the previous method of placing the sample on a

membrane was replaced by a method of injecting a stream of particles into the FEL

pulse train without any container. This has several benefits. First, it minimizes the

time the sample is exposed to the vacuum, thus reducing the risk of drying out. Sec-

ondly, the diffracted signal is now free from scattering from a membrane that would

otherwise reduce the quality of the data. Last, only a small number of samples can be

suspended on one membrane and only a small number of membranes can be keept in

the vacuum chamber at one time. Since opening the chamber is a lengthy process, this

is rather avoided. With the injection technique the chamber doesn’t need to be opened

to change sample and in addition, there is no sample-carrying membrane that has to

be realigned for each new shot. The injection technique has therefore increased the

data rate by several orders of magnitude.
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Figure 5.1. The mimivirus particles were injected through an aerodynamic lense (left) and

intercepted by the X-ray pulses. The diffracted signal was captured on a pnCCD detector with

a hole to let the direct beam through.

Purified mimivirus particles were transferred into a volatile buffer and were then

aerosolized with helium in a gas dynamic nebuliser[15]. The aerosolized mimivirus

particles were then injected into the pulse train of the FEL using an aerodynamic

lens[4]. The electron bunches were measured to be 70 fs long at FWHM which cor-

respond to a pulse length of between 20 fs and 40 fs[50]. Simulations of the damage

process in paper VI and for nanocrystallography in [1] assures that we will see no

effects of radiation damage at resolutions above 1 nm.

The X-ray energy was 1.8 keV and the pulse was focused to a spot with a diameter

of 10 μm (FWHM) with a peak intensity of 1.6 ·1010 photons per square micrometer.

The pnCCD detector[23] was placed 564 mm away from the interaction region which

gives a theoretically achievable full-period resolution of 10.2 nm at the edge of the

detector.

The experiment was performed at LCLS in 2010 and although many images were

collected only two were selected for analysis. The selected images had fairly strong

scattered signal but without a too large missing-data region. The missing data was,

in addition to a central hole in the detector, caused by too high signal in the central

part of the diffraction pattern which saturated the detector. In addition, the detector

was built to handle saturation by letting the extra charge spill over to nearby pixels,

especially in the vertical direction. This can cause a small highly illuminated area to

render a large part of the image unusable.

The diffraction patterns and the corresponding autocorrelations are shown in figure 5.2

(a) and (b) and (d) and (e) respectively. Both autocorrelations show pseudohexagonal

shapes which is characteristic for a projection of an icosahedron. Even though the

images were selected for having a small region of missing data, we can see from the

images in figures 5.2 (a) and (b) that such regions do exist.

The phases were recovered using the RAAR algorithm described in section 4.3.3 and

the support was handled by a constant area shrinkwrap. The PRTF of the reconstruc-

tion is shown in figures 5.2 (h) and (i).
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Figure 5.2. The figure shows the collected diffraction patterns from the mimivirus particle (a,
b), an EM picture of the virus (c), the autocorrelations showing a pseudohexagonal shape (d, e),
the reconstructed images with no mode correction, and correction based on assuming a spherical

and icosahedral density respectively (f, g) and the PRTF of the reconstructions showing a full-

period resolution of 32 nm in both reconstructions.(h, i)
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Several weakly constrained modes exist in both images and were identified by the

methods outlined in section4.6. This essentially means that the low-resolution infor-

mation in the reconstructions is unreliable, so to recover these modes we had to pro-

vide more assumptions about the sample. We chose to publish reconstructions based

on two different assumptions. In the first one the strength of the unconstrained modes

were fitted to make the total density of the virus fit a sphere. In the second one, the

modes were fitted to make the total density fit an icosahedron. The icosahedron here

had its orientation determined so that scattering simulated from it fit the experimen-

tally measured patterns. Both results are shown together with the recovered particle

without mode correction in figures 5.2 (f) and (g).

The reason for publishing both fits was to give a fair impression of the reliability

of the reconstruction. The features that are common to both the spherical and the

icosahedral fit are fairly trustworthy while the differing parts are likely to be biased by

the assumptions. The reconstructions showed an inhomogeneous inside which is very

uncommon for viruses.
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6. Aligning diffraction patterns

In section 3.5 we learned that a diffraction image samples the Fourier transform of the

scattering potential of the sample at the Ewald sphere. If the same sample is imaged

multiple times at different orientations, the diffraction images will sample different

spheres cutting through the same Fourier space, and by combining many such images

the entire Fourier space can be stitched together. Figure 6.1 shows two such Ewald

spheres.

In single particle CXI the sample is destroyed by the pulse so getting more than one

diffraction image per sample is impossible1. Some samples are however reproducible

so that multiple images taken from different samples can be treated as if they were

from the same sample. Especially proteins and viruses are often reproducible even at

high resolution.

This does however introduce a new problem. Since every particle is injected into the

experiment at an unknown orientation, we don’t know the orientation of the sampled

Ewald-spheres. Several methods have been proposed to solve this problem, most of

them rely solely on the information that the scattered intensities carry about the orien-

tation.

6.1 Common lines

Imagine two diffraction patterns of the same object, they will each sample an Ewald

sphere from the same Fourier space. The two Ewald spheres will intersect and this

intersection will have the shape of a curved line as shown in figure 6.1. This implies

that to find the relative orientation between the two Ewald spheres, all we need to do is

to find these lines. This is the basis for an algorithm called common lines or sometimes

common arcs[6].

This method is also used for aligning samples in cryo EM[20]. There the very short

wavelength of the electrons makes the Ewald-sphere sections essentially flat. This

also happens in CXI when the wavelength is much shorter than the target resolution.

In these cases, the identification of one line is not enough to obtain the relative orien-

tation, and at least three patterns have to be combined for their relative orientations to

be determined[46].

1It has been suggested that by splitting the beam and illuminating the sample from multiple

sides at once, more than one image can be collected. Even with this method, we can’t however

get enough data to fill the entire Fourier space.
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Figure 6.1. Two diffraction images of the same sample will sample parts of two different Ewald

spheres. The two spheres will intersect along an arc.

The implementation is fairly straight forward. For every possible relative orientation,

the supposedly intersecting arcs are identified and compared, the relative orientation

that gives the best match is taken as the true one. Or, in the case of flat Ewald-spheres,

this gives two of the three angles defining the orientation.

There is no consensus on how to compare lines. In [6], a Pearson correlation factor

was used after the patterns were normalized by the total radial average of the entire

dataset. The reason for the normalization is to prevent the very intense central region

from dominating. This method has shown positive results on simulated data but other

measures such as the Euclidean distance are also used.

To go from the pairwise relative orientations to absolute orientations, the simplest

way is to fix the orientation of one diffraction pattern and then use the pairwise orien-

tations relating this pattern to every other pattern to determine the absolute orientation

of the respective pattern. This method is however very sensitive to potential miss-

alignments. It is therefore more common to include two- and even three-step routes

to a specific pattern. This gives a more accurate orientation and allows for identifying

non-matching pairwise-orientations that can then be assumed to be false[6].

This method is extraordinarily simple and computationally both fast and parallelizable

but does suffer from some serious drawbacks. Most notably is the sensitivity to noise.

Since only a few pixels on a line determines every orientation, the method doesn’t

use the data very efficiently. The algorithms described below are all methods that use

43



all the data at once instead of taking the route through pairwise orientations, which

allows for much better robustness to noise.

6.2 Manifold embedding

Let us introduce a new way to think of a dataset of diffraction patterns[22]. Start by

defining each pattern as a vector ai where each element ail is the value of the lth pixel.

A 1000 by 1000 pixel diffraction pattern will then be described by a single vector with

1000000 elements.

All patterns in a dataset will be vectors in a very high-dimensional vector-space. Still

we know that except for noise, the only thing different between one pattern and another

is the orientation. And since any orientation can be described by three numbers (for

example three Euler angles[18]) there can be only three degrees of freedom in the

data. This means that there is a three-dimensional manifold on which all these vectors

reside.

The above statement is only true in the noise-free case, but this is still a very important

result. It means that if we can find the manifold that best fits the data, this will repre-

sent a denoised version of the data and if we can find a way to map the corresponding

orientations to points on this manifold, it will also give us the orientations.

We have now reformulated the orientation problem into the more general problem of

fitting a low-dimensional manifold to high-dimensional data, which is a well known

problem called dimensionality reduction. Many algorithms exist that solve it, for ex-

ample the Self Organizing Map (SOM)[25], Generative Topographic Mapping (GTM)[3]

and diffusion maps[12]. Both of the two latter methods have been applied to simulated

diffraction data and for the GTM, seemingly positive results have been reported[22].

It is hard to draw general conclusions on the whole family of methods, we will there-

fore concentrate on the only method that has yet showed positive results, the GTM.

While the method rests on a firm theoretical base of Expectation Maximization2, it

suffers from problems with convergence to local minima. To solve these problems the

authors of [22] have introduced an extension of the method where the manifold, dur-

ing the course of the iterative algorithm, is split into patches that are then joined in a

more favorable way[36]. This deviation from the original Expectation Maximization

algorithm seems to improve the result but we loose the benefit of using a theoretically

well understood algorithm.

Symmetric particles are common in biology and they do present a problem to the

GTM and also generally to manifold embedding methods. It can probably be handled

if the symmetry group is known and the algorithm is adapted accordingly, but it has

yet to be demonstrated. If it is unknown whether a symmetry exist or not there are

however no known way of handling it, except repeatedly testing the algorithm with

2Often abbreviated EM, which is avoided here to avoid confusion with Electron Microscopy.
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Figure 6.2. The orientation of every pattern is determined under the constraint of being self

consistent with all other patterns in the dataset.

different symmetries imposed, and still no method exists to evaluate the result of such

a comparison.

A strength of the method is that it uses all of the data together and is therefore much

more robust to noise than the common-lines method. It has been demonstrated to

work for very low Signal to Noise Ratios (SNR)[22] but there are no tests that show

its performance under other types of noise than Poisson noise.

Another strength is that it can easily be extended to handle sample diversity. For

example, a data set where the sample differs along one or several degrees of free-

dom could likely be both oriented and sorted with the method[44]. This still lacks a

demonstration though. This topic will be discussed further in section 8.

6.3 Expansion Maximization Compression (EMC)

The Expansion Maximization Compression (EMC) algorithm is another attempt at

solving the orientation problem[28]. As opposed to the manifold embedding tech-

niques it makes direct use of the knowledge that the diffraction patterns must fit to-

gether in a self-consistent three-dimensional Fourier-space, see figure 6.2.
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The algorithm was used in paper I and we will therefore explain it in more detail.

The algorithm is iterative and each iteration consists of three steps: Expansion (E),

Maximization (M) and Compression (C).

The algorithm is seeded with an estimate of the Fourier-space that will be refined by

each iteration. The start can be based on any prior knowledge we have about the

particle, but random starts such as random intensities or patterns entered at random

orientations also work.

Expansion

In the first step of each iteration the current Fourier-space is expanded into all possible

Ewald-sphere slices. In other words, we calculate the diffraction pattern for every

particle orientation, given the current 3D Fourier model.

Maximization

Next, the experimental images are compared to the expanded model calculated in the

previous step. This results in a matrix, R jk, describing how well each image fits in

every orientation, where j is the index of the model slice and k is the index of the

experimental image. The metric used is the probability of observing the experimental

diffraction pattern given some assumed type of noise. Poisson noise gives the follow-

ing metric

dPoisson (K,W ) = ∏
i

e−WiW Ki
i

Ki!
(6.1)

where K is the experimental pattern, W is the Fourier slice and i is the respective pixel

index. If we believe that the dominant form of noise follows a Gaussian distribution,

which could be for example detector-noise, the appropriate distance metric would be

dGaussian (K,W ) = ∏
i

e−
(Wi−Ki)

2

2σ2 (6.2)

where σ is the standard deviation of the noise. The distance metric should be adapted

to whatever noise we expect in the data, hence it is important to have a good under-

standing of the noise.

Compression

In the last step of the iteration, a new model is created based on the experimental

patterns. The patterns are assigned orientations based on where they fit the best. In the

original version of the algorithm[28] the patterns are distributed over all orientations

with a weight proportional to how well they fit in that particular orientation. Other

implementations of the algorithm use only the orientation with the best fit[47].
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Scaling

Normally, the strength of the X-ray field interacting with the sample is not known.

Even though it is possible to measure the total strength of the pulse, we don’t known

where in the pulse the sample was located. In [27], a method to recover these inten-

sities alongside with the orientations was introduced. It estimates the scaling φ after

the maximization step based on the formula:

φk =
∑ j R jk ∑i K2

ik

∑ j R jk ∑i KikWi j
(6.3)

where Kik is the value of pixel i of the kth experimental pattern and Wi j is the value of

pixel i of the jth model slice.

Identifying outliers

Many problems require a large number of diffraction patterns. This is the case for

example for high resolution reconstructions or when the noise in a single pattern is

very high. It is then not possible to hand pick the patterns to be included in the recon-

struction. Automated filtering works fairly well but is far from perfect at the moment

and even with good algorithms there are some types of “bad” patterns that are vir-

tually indistinguishable from good patterns. One such case is when one pulse hits

two particles that are both aligned with the beam axis. The pattern is then virtually

indistinguishable from that from a single particle.

For these reasons it is important for the algorithm to be able to identify patterns that

don’t fit in the recovered Fourier-space. We have implemented this feature as a special

bin alongside the rotational bins, that doesn’t contribute to the Fourier volume. This

bin also has the feature of forcing patterns to be either fully in or out, as opposed to

the fuzzy classification used in the rotational bins. An important feature of this type of

filtering is that patterns can have their classification changed throughout the progress

of the algorithm and we are therefore not hurt by early misclassifications.

To identify bad patterns, for every pattern the summed likelihood of the pattern to be

in any orientation is calculated:

�k = ∑
j

R jk (6.4)

Now, a fixed threshold of �k can be used to identify patterns that don’t fit, or a fixed

ratio of the images with lowest �k can be selected. For future updates of the algorithm,

a better approach would be to identify a gap in �k between good patterns and bad

patterns, and thus identify a suitable threshold on the fly.
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Comparison to manifold embedding

Both the EMC and manifold embedding algorithms make use of the data in an effi-

cient way. The key difference is that EMC forces the patterns to be consistent as a 3D

Fourier-space whereas the manifold embedding techniques only require the dimen-

sionality to be three. This makes the EMC algorithm very strong, but comes at the

expense of having no theory proving convergence, which exists for many of the man-

ifold embedding techniques, for example the GTM. In practice the EMC algorithm is

however the only algorithm that has been successful on experimental data so far[27].

We mentioned that GTM had problems with symmetric particles. This is not the

case for EMC due to the ability to distribute a single diffraction pattern over multiple

orientations. This allows for the EMC algorithm to identify the symmetry by itself.

This is an important benefit when studying objects with unknown symmetry, like many

protein complexes and viruses.

Possible issues

While the probability-based distance metrics make sense when the algorithm is close

to the solution, they can hurt the algorithm before it has converged. Before conver-

gence, the main difference between the diffraction patterns and the model slices is

due to the inaccuracy of the model and not the noise. To the noise model, all ori-

entations will seem super improbable which can cause unexpected behaviors such as

misalignments and numerical errors.

A more proper way to handle this would be to introduce a model-confidence term into

the distance metric. This is a neat solution but requires careful tuning to assure that

the distances are reasonable for all stages of the algorithm.

A quick-and-dirty remedy could be to use the Gaussian metric with a large σ to handle

the large model errors at early iterations and then decrease the value as the algorithm

progresses. The decrease has to be very slow to make sure that the model has time to

adapt to the new σ at every stage of the algorithm.

6.4 Estimating the required number of diffraction
patterns

Independent of the ability to find the correct orientation of each pattern, we need

enough diffraction patterns to ensure a sufficiently dense sampling of Fourier space

up to the target resolution. Since the process of orienting diffraction patterns is com-

putationally very hard it is usually done post beam-time, so currently there is no way

of knowing if the collected data is covering enough of Fourier space while still collect-

ing data. What we can do is to calculate the number of diffraction patterns statistically
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required to get a dense enough sampling, with a certain probability. This problem was

covered in paper III.

We define a full coverage here as where every pixel in the pattern is sampled at least

once. The required sampling rate, that defines the size of these pixels, is denoted s,

where s = 1 is the Nyquist rate. A sampling of s = 21/3 is a common requirement for

phase recovery.

We note that if every pixel in the outermost shell of pixels are covered then every

pixel inside will be covered as well. We will therefore only analyze the occupancy

of this outer shell and we define R = D/d where D is the object size and d is the

resolution. The number of pixels in the outer shell is then given by Ks = 4π
(
sR− 1

2

)2

and the number of pixels in the outer shell covered by a single diffraction pattern is

Ks = 2π
(
sR− 1

2

)
. This can be further reduced when there is a flat Ewald geometry

since every covered pixel has a centrosymmetric partner that will be covered by the

same patterns and can therefore be treated as the same:

K =
Ks

2
= 2π

(
sR− 1

2

)2

(6.5)

k =
ks

2
= π

(
sR− 1

2

)
(6.6)

Making the simplifying assumption that the coverage of each pixel is independent

of the covering of other pixels we can use K and k to calculate the probability of

achieving a full coverage with N patterns:

p =

(
1−

(
1− k

K

)N
)K

(6.7)

If we instead set a target probability p we can estimate the number of patterns required

to reach our target resolution:

N =
ln
(
1− p1/K

)
ln(1− k/K)

(6.8)

An example is plotted in figure 6.3 for p = 0.95 and s = 21/3.

If the scattered signal is very week the number of patterns will instead be limited by

overcoming the noise. In that case the number of patterns will scale with increasing

resolution as.

N ∝ (2sR−1)(2sR)d f ≈ (2sR)d f +1 ∝ Rd f +1 (6.9)

where d f is the fractal dimension of the particle. For proteins, this number is usually

in the range of 1.5 to 2.0[14] and the number of required patterns therefore increases

with at most resolution to the power three.
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Figure 6.3. The number of images required to completely fill Fourier space with a probability

of 0.95 is plotted against R for s = 21/3. As the resolution gets higher, the required number of

images increases. For high resolutions the increase is close to linear.
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7. Experimental three-dimensional imaging of
the mimivirus

In paper I we perform a three-dimensional reconstruction of the mimivirus. As a

proof of concept, this result is very important since it is the first particle to be imaged

in 3D with this technique. The experiment was performed at the AMO endstation

at LCLS. Just like for the two-dimensional imaging in paper II (see section 5.2) the

samples were aerosolized in a volatile buffer and injected into the vacuum through an

aerodynamic lens.

The pnCCD detectors[23] were placed 740 mm from the interaction region which was

the largest distance permitted by the geometry of the vacuum chamber. The reason

for the large distance was to reduce the effect of the missing data due to the central

hole in the detector. Further, the X-ray energy was chosen to 1.2 keV which, together

with the distance, assures no weakly constrained modes for a sample of 450 nm size

(see section 4.6). Each pulse contained about 1.2 ·1012 photons which corresponds to

a total pulse energy of 0.24 mJ. The pulse was focused to a spot with a diameter of

10 μm (FWHM).

Several tens of thousands of images were captured and many hundreds of them con-

tained scattered signal, implying that a particle was intercepted by the pulse. To iden-

tify diffraction patterns that originate from mimiviruses, a program sorted the patterns

based on the existence of the characteristic six-streak star shape common to diffraction

from an icosahedron. 307 diffraction patterns were identified in this way.

A second level of sorting was performed by hand to get rid of images containing

saturation. Not having saturation assures that all images can be compared to the model

based on the same pixels, and therefore makes the comparisons more reliable. In this

step 261 patters were identified as suitable for using in a 3D reconstruction.

The pnCCD detectors have a dynamic range of only about 500 photons at 1.2 keV.

This means that the selection of unsaturated diffraction patterns will severely limit the

resolution by avoiding the stronger pulses. Since the experiment was mainly intended

as a proof-of-principle experiment we did however prioritize the robustness of the

algorithm above resolution.

The detector output data of 1024x1024 pixels was cropped to 256x256 pixels which

corresponds to a maximum achievable resolution of 79 nm which, for the 450 nm

sized mimivirus corresponds to 10x10x10 independent pixels in the sample. We also

binned the patterns 2x2 resulting in final patterns of 128x128 pixels. This makes the

computation significantly less heavy. Based on the results in section 6.4, 261 patterns

are sufficient to achieve a resolution of 79 nm.
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Figure 7.1. The 261 slices oriented with the EMC algorithm. This image plots the patterns in

logarithmic scale in the best-fitting orientation. A section of the Fourier volume has been cut

away to reveal the central parts.

A slightly varying beam position meant that the center of the diffraction pattern fluc-

tuated slightly from shot to shot. Before combining the patterns, the correct center

therefore had to be identified for each pattern. The center position that maximized the

Friedel symmetry of the image was chosen. The variation of the center position was

found to have a standard deviation of 2.5 pixels in both the horizontal and vertical

direction. The maximum difference was 9 pixels in the horizontal and 10 pixels in the

vertical direction.

The patterns were oriented using the EMC algorithm. This algorithm was chosen

mainly because of its proven effectiveness with experimental data and its ability to

handle unknown symmetries. This was particularly important since the symmetry of

the entire mimivirus particle was still unknown. The noise was modeled as a Gaussian

with a fixed width since detector noise and miss-alignment error were expected to

dominate over poisson noise. The oriented images in their most likely orientation i.e.

the one with largest R jk, are plotted in figure 7.1.

The resulting Fourier-volume was phased by Hawk using the RAAR algorithm with

area-constrained shrinkwrap. 50 reconstructions with independent random starts were

averaged to produce the final density map which is plotted in figure 7.2 as five iso-

surfaces. High density is represented by dark blue and low density by light blue.

Figure 7.3 shows the PRTF from the 50 reconstructions. It shows reproducible phases

almost to the edge of the data and the criterium of a PRTF higher than e−1 gives a

full-period resolution of 83 nm. This resolution gives approximately 10 independent

resolution elements along the particle diameter. Therefore only features of lower res-

olution than that are reliable. Apparent higher-resolution features in 7.2 are an effect

of the iso-surfaces.
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Figure 7.2. The reconstructed density of the mimivirus. Dark-blue iso-surfaces indicate high

density and light blue iso-surfaces indicate low density. We see a strong shift of density to one

side and a mushroom shaped low-density region inside the virus. At the current full-period

resolution of 83 nm, details smaller than a tenth of the particle size are not reliable.

Figure 7.3. The PRTF shows that phases are recovered almost to the edge of the data. The

resolution where the PRTF drops below e−1 is 83 nm. The periodic structure coincides with the

fringes in the diffraction patterns and are caused by the fact that phases are generally harder to

recover where the signal is weak.
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The map shows a density distribution that is clearly not icosahedraly symmetric but

does has a pseudo five-fold symmetry. It also shows two very interesting low-resolution

features: a strong density that is shifted to one side and a mushroom-shaped lower-

density region in the center. The high-density region could be attributed to the DNA in

which case some mechanism to confine the DNA to a volume smaller than the capsid

volume has to exist, which has so far not been known to exist in viruses. If the dense

region is not the DNA it must be some other unknown dense structure.

Future studies of the mimivirus at FELs have great prospects of improving on the

current resolution and further increasing our understanding of this internal structure.
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8. Recovering conformations

8.1 Effects of structural variability on phase recovery

In paper IV we investigated the effects that sample variation has on the reconstruction

process. In the orientation recovery process the samples were assumed to be identical.

What are the effects if this assumption is not true?

The problems this cause turns out to be more severe than for example in crystallogra-

phy. The reason is that we are averaging diffracted intensities while in crystallogra-

phy the averaging is an effect of the scattered waves from many unit cells coinciding,

hence the waves themselves, and not the intensity, is averaged. The averaging in crys-

tallography is called a coherent averaging while our phase-free case is referred to as

incoherent averaging. The difference is illustrated by the following equations.

Ucoherent =
1

2
|U1 +U2| (8.1)

Uincoherent =
1

2
(|U1|+ |U2|) (8.2)

where U1 and U2 are two diffracted waves and Ucoherent and Uincoherent is the coherent

and incoherent average respectively.

In the paper we calculate the Fourier transform of a protein along many different states

of a Molecular Dynamics (MD) trajectory. Under coherent averaging it contained

variations up to 2.7 Å while under incoherent averaging it was only reconstructable

up to 3.7 Å. This discrepancy arises since a coherent average of the scattered waves is

equivalent to the scattering from an averaged sample while the incoherently averaged

waves do not correspond to anything intuitively understandable. And worse, it doesn’t

correspond to anything interpretable to the reconstruction algorithm. This is the reason

why the errors are larger than the structural differences.

Many proteins have several different conformations, and in addition to that there might

be flexible parts adding to the diversity of the structures. This diversity is often central

to the function of the protein. In a crystal, the packing can force the proteins to obtain

fairly similar conformations and the heterogeneity of the sample is reduced.

Initially there was much skepticism about whether proteins retain their native structure

when injected into vacuum. Extensive MD simulations have since shown that the

structures stay preserved as long as a few water molecules are still present to occupy

key hydrogen bonding sites. Without these water molecules, the protein stays folded

but diverges more significantly from the native structure[39][34].
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The lack of crystal constraints can increase the heterogeneity and could, in principle,

reduce the resolution in an imaging experiment. But, it also means that the diffraction

patterns represent the protein in many of its possible structures, not just the one most

favored by crystal packing.

If we were able to separate the patterns into different conformational groups before

averaging them we could not only circumvent the problem of heterogeneity but also

image the full conformational space of the protein and this could provide information

about the dynamics and function of the protein. In the next section we will discuss

how current algorithms for orienting patterns could be extended to also do this type of

sorting.

8.2 Extensions of alignment algorithms

Manifold embedding

If a protein exist in distinct conformations, the most straightforward extension of the

algorithm is to simultaneously fit several manifolds to the data, one per conformation.

The algorithm will likely struggle if the conformations are fairly similar since the

manifolds will then lie close together and could fairly well be described by only one

of the manifolds. A possible remedy would be to solve the problem assuming a single

conformation and then duplicate the manifold when it is close to the solutions.

If the heterogeneity of the particle being imaged has one or several full degrees of

freedom, the extension of the manifold embedding algorithms is conceptually fairly

straightforward. It is done by extending the dimensionality of the manifold to include

both the three rotational degrees of freedom and the additional conformational ones.

Extending the algorithm like this does however make the problem computationally

harder and requires more data which will limit how large amounts of heterogeneity

that could be handled. The technique was suggested in [44] but has not yet been

backed up by demonstrations.

EMC

The extension of EMC to handle distinct conformations is as straight forward as for

manifold embedding. We simply create one Fourier model per conformation and thus

have one set of rotational bins per conformation. We will then not only determine the

best orientation for each pattern but in the same way also the best conformation.

The extension to finding full degrees of freedom is not as simple as for manifold em-

bedding. The seemingly equivalent way of adding a full set of Fourier models along

the degree of freedom is a good idea but without some additional constraints, the or-

dering along the coordinate will lack meaning and this case will be similar to having
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multiple unrelated conformations. One simple solution is to artificially add some over-

lap between the conformations. We know that models that are close together along

the degree of freedom must also have similar Fourier models. The compression step

should therefore be extended to also include a mixing between neighboring models.

Further, this mixing should be large for low q and small, or even non existant for high

q. The reason is that at low resolution, the model changes little even over larger con-

formational changes while at high resolution the effect of even a small conformational

change could be considerable.
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9. Outlook

We are just beginning to utilize the potential held by free-electron lasers. Method de-

velopment is rapid and accompanied by an equally fast development of the hardware.

Technologies like seeding and improved detectors could push already existing sources

to a point where almost any protein could be studied. In addition, new sources are be-

ing built and planned, for example the European XFEL is scheduled to start operation

in 2015. It will have the capability to deliver 27000 pulses per second which could

improve the rate of data collection by orders of magnitude.

I expect a rapid stream of new reconstructions and new biological results over the next

few years. In particular I look forward to seeing development in the following three

areas.

Two-dimensional imaging of live samples

The two dimensional images presented in this thesis were not simply a step on the

way towards three-dimensional imaging but is a unique way to image irreproducible

samples, like living cells. The method of injecting samples is very gentle and both

cells and viruses have been shown to be active after injection. This, combined with

the very short time they spend in vacuum allow us to image cells at high resolution

while they are still alive.

The resolution of the 2D images have so far been limited by the dynamic range of

the detector. Increased dynamic range, or a detector gain that scales radially could

increase the resolution by up to an order of magnitude. Further, better focusing optics

and seeded lasers could allow us to image irreproducable objects at truly unprece-

dented resolutions.

Three-dimensional imaging of reproducible samples

The resolution when imaging in 3D is not limited by the dynamic range. Many im-

ages are combined and it is enough that some images cover the low-resolution region

of diffraction space and others cover the high-resolution region. Even with already

existing data, much higher resolution could therefore be achieved. What is needed is a

strong effort to evaluate and improve the algorithms for data analysis. I am convinced

that this will leed to an explosion of new structures both at higher resolution and of

smaller objects.
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Separation of conformational states

Imaging one particle at a time has the potential of separating conformational states and

thus to image the entire ensamble of structures of a protein. Combined with the pos-

sibility to collect data at a very quick rate, this could become a powerful technique to

study not only unknown proteins but also understand the dynamics of already known

proteins .

The ability to image without the need for crystallization combined with the revolu-

tionizing ability to separate conformational states promises a very interesting future

for structural biology.
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10. Sammanfattning på svenska

I denna avhandling försöker vi öppna nya dörrar inom mikroskopin genom att använda

en ny typ ljuskälla, fri elektronlasern. Att kunna se och avbilda små saker har inte bara

länge fascinerat människor utan har även lett till några av de största vetenskapliga

genombrotten så som upptäckten av celler, bakterier och DNA.

Hur små saker man kan se med ett mikroskop begränsas av våglängden på det ljus

man använder. Med synligt ljus går det inte att se detaljer mindre än några hundra

nanometer (en nanometer är en miljondels millimeter). Av denna anledning används

istället ofta röntgenstrålar med vilka det går att kan se detaljer mindre än en tiondels

nanometer, vilket är tillräckligt för att kunna urskilja enskilda atomer. Nackdelen är

dock dels att de inte går att tillverka effektiva linser för röntgenstrålar samt att det

mesta av strålningen går rakt igenom det prov man studerar och alltså väldigt lite

reagerar med provet och bidrar till att ge oss information om det.

Trots dessa begränsningar så har forskare i mer än 50 år använt röntgenstrålar i meto-

den röntgenkristallografi för att studera atomstrukturen hos molekyler med många

tusen atomer (så kallade makromolekyler) som exempelvis proteiner. En kristall ska-

pas av flera miljarder identiska molekyler och trots att varje molekyl bara reagerar

väldigt svagt med röntgenstrålarna så ger de tillsammans en tillräckligt stark signal

för att göra det möjligt att räkna ut positionen hos varje atom. Istället för en lins

används kraftiga datoralgoritmer som kan räkna ut hur molekylen såg ut utifrån rönt-

genstrålarnas diffraktion, alltså hur de sprids när de träffar molekylen. Över 70000

proteiner har avbildats med den här metoden och vår förståelse för hur livet fungerar

har ökat enormt tack vara denna information.

Den största svårigheten inom röntgenkristallografi är att skapa kristallen. Det tar ofta

lång tid och många proteiner har hittills ingen lyckats kristallisera. Det innebär att det

finns ett gap i vår förståelse av biologin på grund av att vi inte kan se strukturen hos

dessa okristalliserbara molekyler.

En lovande lösning på det här problemet ges av en ny typ av röntgenkälla; fri elektron-

lasern. En fri elektronlaser producerar röntgenljuspulser som är 10 miljarder gånger

kraftigare än någon tidigare röntgenkälla. Med denna extremt kraftiga strålning kan

det gå att få en tillräckligt stark signal från ett enda protein och vi skulle därför kunna

kringgå behovet av kristaller. När en molekyl träffas av så kraftig röntgenstrålning så

kommer den mycket snabbt att förvandlas till ett plasma och explodera, så frågan är

hur vår bild av molekylen påverkas av detta. Ser vi molekylen som den såg ut innan,

efter eller under explosionen? Nyckeln till svaret är att röntgenpulserna från fri elek-

tronlasern är extremt korta, under 100 femtosekunder (alltså under en tiomiljondel av

en miljondels sekund). Denna tid är kortare än den tid det tar för molekylen att ex-

plodera och eftersom molekylen då exploderar först efter att röntgenljuset har passerat
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så kommer bilden vara opåverkad av explosionen. Denna princip kallas diffraktion

före destruktion.

Då det naturligt är svårare att se små saker än stora så testades inte metoden direkt på

de proteiner som inspirerat den. Istället gjordes de första försöken på konstgjorda

föremål ca 4000 nanometer stora. Dessa gjordes 2006 och bevisade att metoden

fungerar.

I den här avhandlingen ingår de första avbildningarna av biologiska prover, dels av

bakterier som är ca 1000 nanometer stor och viruset mimivirus som med sina 450

nanometer är ett av världens största virus. De datoralgoritmer som används inom

röntgenkristallografi fungerar inte i vårt fall och därför har vi i Uppsala utvecklat ett

nytt programpaket, Hawk, för analys av diffraktionsdata från enskilda partiklar som

användes för dessa avbildningar.

Dessa avbildningar gav tvådimensionella bilder och för att kunna avbilda något i 3D

behövs många bilder ur många olika vinklar. Eftersom provet exploderar när det träf-

fas av röntgenpulsen är det omöjligt att ta flera bilder av samma prov. Om det finns

flera identiska kopior av provet så går det dock att behandla bilder av dem som om de

kom från samma prov. Proteiner och virus har ofta den egenskapen och går därför att

avbilda i 3D.

För att lyckas återstår dock svårigheten att ta reda på från vilket håll bilden av provet

är taget. Proverna sprutas in i en vakuumkammare där de träffas av en röntgenpuls och

vi vet inte vilken rotation varje prov hade när det träffades. Rotationen måste alltså

räknas fram endast genom att studera diffraktionsdatan. Vi lyckades med detta för

data från mimiviruset där 261 diffraktionsbilder kombinerades till en tredimensionell

bild. Detta har gett oss ny information om viruset, bland annat så ser vi en oväntad

förskjutning av massa mot ena sidan av viruset. Denna massa är troligen virusets DNA

och det betyder att det måste finnas en okänd mekanism som hindrar DNAt från att

sprida sig till andra delar av viruset. Resultatet är även viktigt eftersom det visar att

rotationsproblemet kan lösas i praktiken.

Jag är övertygad om att vi tack vara fri elektronlasrar snart kommer att se avbildningar

i 3D av mindre virus och även av proteiner. Utvecklingen av både lasrarna själva och

algoritmerna som används för att analysera datan går mycket fort och forskningsfältet

fortsätter att attrahera duktiga forskare. Detta kan äntligen fylla det gap inom struk-

turel biologi som kravet på kristallisation har skapat.
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