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1. Introduction

“The history of the living world can be summarized as the elaboration of

ever more perfect eyes within a cosmos in which there is always something

more to be seen” wrote Pierre Teilhard de Chardin in The Phenomenon of Man
(1955). In the early sixteen hundreds, members of the Accademia dei Lincei in

Rome decided to split the task of exploring the world around us: Gallileo was

to study things big while Stelluti and Cesi were to explore the microscopic

world. 300 yeares later, a fundamental barrier was taken down through the in-

vention of X-ray crystallography, which made it possible to observe structures

much smaller than the wavelength of visible light.
X-ray crystallography is one of the most successful techniques ever devel-

oped for the study of structures in atomic details. It has had a huge impact

on biology, e.g. through the discovery of the structure of DNA, RNA, pro-

teins and their complexes. Every year thousands of new structures are solved

and deposited in the Protein Data Bank. Cryo electron microscopy also shows

great promise with current structures frequently achieving resolutions below

10 Å, but still not enough for atomic resolution.
However, X-ray crystallography, as the name suggests, is limited to sys-

tems that can be crystallized. Many, if not most, systems of biological interest

are very difficult, or impossible to crystallize. Probably the most striking ex-

ample is that of a simple cell, but there are many others such as organelles,

glycoproteins and many membrane proteins. Alternative approaches have to

be employed to image these samples.

Ultrafast Coherent X-ray Diffractive Imaging (CXDI) is a relatively new
technique, which uses a coherent, short and extremely bright pulse of X-rays
to capture a diffraction image of the sample which is then phased to reveal
the sample structure. CXDI has the potential to allow three dimensional imag-
ing of nonperiodic reproducible biological samples up to atomic resolution
and two dimensional imaging of non reproducible samples up to very high
resolution, without the need of modifying the sample.

CXDI does not benefict from the amplification effect of a crystal as X-
ray crystallography does. But on the other hand it is possible to sample the
diffraction pattern continuously which makes the phasing problem much sim-
pler. To be able to achieve high resolution using CXDI, very short and intense
pulses are necessary otherwise the radiation damage that develops during the
exposure limits the maximum resolution. For example, the highest resolution
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possible for biological samples using current synchrotron based x-ray micro-

scopes is around 20nm, limited by radiation damage [21].
The recent development of X-ray free-electron lasers (FELs) gives a per-

fect instrument to realize the full potential of CXDI. X-ray FELs can produce
extremely intense X-ray pulses, a billion times more brilliant than third gener-
ation synchrotron sources. X-ray FEL pulses are also extremely short, on the
order of only a few femtoseconds. FLASH, in Hamburg, Germany, was the
first soft X-ray free electron laser in the world, and is based on the Self Am-
plified Spontaneous Emission (SASE) principle. It started operations in the
summer of 2005 at a wavelength of 32nm and a peak power on the order of
gigawatts and pulse length as short as 10fs. It has gone through several updates
reaching the wavelength of 6.5nm. FLASH is a test facility for the European
X-ray Free Electron Laser (XFEL), and it has produced many important re-
sults in the CXDI field [9, 11]. In April 2009 the Linac Coherent Light Source
(LCLS) became the first hard X-ray free electron laser in the world produc-
ing light with a wavelength of 1.5 Å. The Spring-8 Compact SASE Source
(SCSS) in Japan will soon be ready and the XFEL will follow in a few years.
During the last few years there has also been a rapid development of table-

top high harmonic generation (HHG) sources. These have the potential to

compete one day with free electron lasers and they are much more affordable

for individual labs. Nowadays there are HHG sources with very good coher-

ence properties capable of producing extremely short pulses, under 1fs, at soft

X-ray wavelengths and more than 1011 photons per pulse [35]. This is still a
few orders of magnitude below what is possible using accelerator-based FELs
but progress is fast, and those sources might become very important tools in
the near future.
The availability in the near future of several hard X-ray FELs combined

with the increasing development of CXDI experimental techniques and data

processing algorithms have the potential to transform Ultrafast Coherent X-

ray Diffractive Imaging from a niche of unconventional techniques into a

mainstream structural biology tool that complements X-ray crystallography

or electron microscopy.

The aims of this thesis are: to present recent experimental results in Ultra-
fast Coherent X-ray Diffractive Imaging using both free electron lasers and
optically-driven table-top X-ray laser, to theoretically investigate the problem
of sample heterogeneity for reproducible samples and to propose new experi-
ments made possible with these new sources.
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2. X-ray Lasers

Since the discovery of X-rays by Wilhelm Röntgen in 1895 X-ray sources

have continuously improved, often leading to significant new science. The in-

crease in brilliance since the first rotating anodes used for crystallography has

been spectacular, bridging many orders of magnitude. The development of

dedicated synchrotron light sources in the beggining of the 80s contributed to

an explosion of protein structures solved by crystallography. A further boost

came with the introduction of wigglers, undulators and the increase in bright-

ness from third generation sources, which employ them.

Figure 2.1: Peak brilliance of several X-ray sources. Adapted from [1, 29]

Yet the first dedicated synchrotron source (the SRS Daresbury) which be-
gan user operation in 1981, produced just about 40 times higher beam in-
tensities on the sample than a laboratory X-ray generator. The synchrotron
beam had better coherence parameters, and it was tunable, but overall, the im-
provement was evolutionary. X-ray lasers are different. The peak brightness
of these lasers exceeds present synchrotrons by 1010, the coherence degen-
eracy parameters exceed synchrotrons by 109, and the time resolution is 105

times better. These developments are extraordinary. The results will impact on
a broad range of disciplines, and guide technology and facility development
in the future.
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2.1 Linear Accelerator-Driven Free-Electron Lasers

A free-electron laser (FEL) is a parametric amplifier, which operates by trans-
ferring energy to the output signal from an oscillator. An electron bunch is ac-
celerated to relativistic energies, and sent through a periodic magnetic struc-
ture (undulator) where transverse oscillations and interference produce syn-
chrotron radiation enhanced at specific wavelengths. The intensity of this ra-
diation scales with the number of electrons in the bunch. Photons co-propagate
with the relativistic electrons and, if the undulator is long enough, induce an
energy modulation, leading to a periodic density modulation in the electron
cloud. The resulting microbunches behave like giant charged particles, and
emit photons proportional to the square of their total charge in the undulator.
At wavelengths longer than the bunch length, this radiation is coherent.

Optically driven table-top X-ray lasers use an intense optical laser pulse
to create coherent X-ray pulses in a plasma. The interaction of intense opti-
cal fields with material at intensities of 1018 W/cm2 and above is governed

by the electron relativistic behaviour, creating the domain of relativistic op-

tics. Electrons accelerated in such photon fields can be used in ultra-brilliant

X-ray sources, e.g. by laser-assisted synchrotron radiation, linear and non-

linear Compton scattering, betatron radiation or free-electron-laser mecha-

nisms. Currently these sources are not quite as powerful as FELs but progress

is fast, and table-top X-ray lasers may catch up with large linac-based FELs.

Figure 2.2: (a) Schematic cut-away section of a light well, which comprises a

nanohole through a stack of alternating metal and dielectric layers, into which an

electron beam is launched. Light is generated as electrons travel down the well and en-

counter a periodic material environment. (b) Scanning electron microscope image of

a light well fabricated in a gold- silica multilayer. (c) The alternating metal-dielectric

layer structure as seen at an exposed corner of the sample. [2]

X-ray lasers are bound to get smaller, more efficient and more affordable.

A recent paper describes a free-electron laser on a chip (see Fig. 2.2). The
tiny FEL utilises the Smith-Purcell effect [39], which is related to Cherenkov
radiation.
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There are signs that indicate that a major scientific explosion is taking

shape.

2.1.1 The SASE process

The SASE process, central to all existing X-ray free electron lasers, is a pro-

cess in which the electrons are organized into micro bunches separated by the

distance of a wavelength, as they go through the undulator (see Fig. 2.3). This

happens because, as in a normal synchrotron, when the electrons go through

the undulator they emit radiation due to the acceleration imposed by the mag-

netic field. If the undulator is sufficiently long, this radiation starts to produce

a measurable effect in the distribution of the electrons making them accu-

mulate in micro bunches separated by exactly one wavelength. This is a self

reinforcing process as the more the electrons bunch together the stronger the

field they produce as they will radiate coherently. This process continues until

almost all the electrons are in these micro-bunches, at which point saturation

is reached. Under these conditions the microbunches behave like giant single

particles and emit light proportional to the square of their total charge.

Figure 2.3: Simulation of micro-bunching during the SASE process where the elec-
tron density is represented by the density of dots. The snapshots from the left to the

right represent the electron structure along the undulator, with the left side represent-

ing the beginning and the right side the end of the undulator. [29]

The radiation produced by electrons distributed in this manner is much
more intense than if the electrons were uniformly distributed throughout the
undulator because with microbunching the distance between most of the elec-
trons is always a multiple of the wavelength, and so the radiated electric fields
will be in phase. In other words, the electrons radiate coherently and the re-
sulting intensity scales with the square of the number of electrons which is
why the difference in peak brilliance is so large.

2.1.2 Current X-ray FEL Facilities

X-ray FEL are developing at a very fast pace. The first hard X-ray FEL, the
LCLS, began user operations in October 2009. There are several X-ray FELs
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being built such as the European XFEL in Germany and SCSS in Japan, as

well as several soft X-ray sources such as FERMI and SPARX in Italy. The

SwissFEL in Switzerland is also in planning stages. The different character-

istics of FEL radiation compared to a third generation synchrotron mean that

while they are often called fourth generation sources they will not replace syn-

chrotrons in any meaningful sense. X-ray lasers should be considered a class

of their own better suited for other kinds of experiments than those possible at

synchrotrons.

2.2 Optically-Driven Table-Top X-ray Lasers

The first high harmonic generation (HHG) sources were created about two

decades ago and since then their power has been increasing as the power of all

lasers usually increases. They provide a relatively cheap and tunable source of

very short (a few fs) and intense pulses (more than 1010 photons per pulse).
HHG works by shining a very intense optical laser into a gas. When the

field of the optical laser is sufficiently strong electrons in the gas will be ion-
ized by field ionization, and as the field progresses they will be accelerated
back towards the ion and finally recombine, generating in the process short
wavelength radiation (see Fig. 2.4).

Figure 2.4: High harmonic generation process in an atom illuminated by an intense

optical laser. The field is strong enough to distort the atomic potential well and allow-

ing the electron to tunnel out. When the field reverses the electron is accelerated back

towards the ion. Radiative recombination generates high energy radiation. [12, 23]
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3. An Introduction to Fourier
Transforms

Fourier transforms are used extensively in the subject of diffraction and imag-
ing, so in this chapter we present a basic introduction, describing the Fourier
transform and its most commonly used properties. These properties will be
fundamental for a description of scattering and for the explanation of image
reconstruction algorithms.

3.1 Continuous Fourier Transform

We will start by defining the continuous forward Fourier transform, following
crystallographic tradition, as,

f̂ (q) = F f =
∞∫

−∞
f (x)exp(2πiq · x)dx (3.1)

and the inverse transform as

f (x) = F−1 f̂ =
∞∫

−∞
f̂ (q)exp(−2πiq · x)dq. (3.2)

The following properties of the Fourier transform will be important for the
rest of the thesis:

1. The Fourier transform is a linear transformation. For any two complex
numbers a and b

F {a f (x)+bg(x)}= aF f (x)+bFg(x) (3.3)

2. “Stretching” a function “squeezes” its Fourier transform,

F { f (ax)}=
1

|a| f̂ (
x
a
) (3.4)

where a is a real number different from zero. This is known as the scaling
property or theorem.
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3. The Fourier transform of a real function f (x) is a hermitian function,

f̂ (q) = f̂ (−q) (3.5)

where f̂ (−q) represents the complex conjugate of f̂ (−q).
4. The Fourier transform of an hermitian function f (x) is a real function,

Im
[
f̂ (q)

]
= 0 (3.6)

where Im
[
f̂ (q)

]
represents the imaginary part of f̂ (q).

5. The Fourier transform of a function translated by an amount Δx is related
to the transform of the original function by a factor of exp(2πiΔxq),

F f (x+Δx) = exp(2πiΔxq)F f (x) (3.7)

6. The integral of the square of the absolute value of a function and it’s Fourier

transform are identical ∫
| f̂ (q)|2dq=

∫
| f (x)|2dx. (3.8)

This is usually known as Parseval’s theorem or Rayleigh’s energy theorem.
7. The convolution of any two functions is equal to the inverse Fourier trans-

form of the product of the forward Fourier transform of those two functions,

f (x)∗g(x) =
∫
f (τ)g(x− τ)dτ

= F−1 {F f (x)×Fg(x)} (3.9)

where f (x)∗g(x) denotes the convolution of f (x) with g(x). This property
is known as the convolution theorem.

8. The cross-correlation of any two functions is equal to the inverse Fourier

transform of the product of the forward Fourier transform of one function

with the complex conjugate of the forward Fourier transform of the other

function,

f (x)�g(x) =
∫
f (τ)g(x+ τ)dτ

= F−1
{
F f (x)×Fg(x)

}
(3.10)

where f (x)�g(x) denotes the cross-correlation of f (x) with g(x).
9. Finally the correlation of a function with itself, also known as autocorrela-

tion is equal to the inverse Fourier transform of the absolute value squared
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of the forward Fourier transform of that function,

f (x)� f (x) = F−1
{
F f (x)×F f (x)

}
= F−1{|F f (x)|2} (3.11)

3.2 Discrete Fourier Transform

In practice we will be dealing with signals which are not continuous, but dis-

crete, as most signal recording is done digitally nowadays and to be able to

perform numerical computations with any input we first need to digitize it.

Fortunately there is a discrete analogue of the Fourier transform called the

discrete Fourier transform (DFT). The one dimensional discrete Fourier trans-

form of a vector x of length N is defined by

x̂k = F {x}k =
1√
N

N

∑
n=0

xn exp
(
2πik

n
N

)
, (3.12)

and the inverse pair as

xn = F−1 {x}n =
1√
M

M

∑
k=0

x̂k exp
(
−2πin k

M

)
. (3.13)

Throughout this thesis we will commit a slight abuse of notation and use
F to symbolize both the continuous Fourier transform, when the operand is a
function, and the discrete Fourier transform, when the operand is a vector.

The DFT has properties analogous to most properties of its continuous
counterpart, in particular it is a distance preserving transform, that is, the dis-
tance between two vectors is the same before and after transformation

|F(x)−F(y)|= |(x− y)| (3.14)

which follows from both the linearity of the transform and Parseval’s theorem.

It also fulfills the convolution theorem if we define the discrete convolution as

(a∗b)n =
N−1
∑
m=0

ambn−m mod N . (3.15)

Notice the modulus N in the index of b. This detail will lead to important
consequences.
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3.3 Sampling and oversampling

An arbitrary band-limited signal f (x) with bandwidth 2B, meaning a signal
which has f̂ (x) = 0 for every |x| > B, can be perfectly reconstructed from
the same signal sampled in steps of length smaller or equal to 1/2B [38]. 2B
is known as the Nyquist rate. This derives from the fact that the continuous

Fourier transform of f (x) can be exactly reconstructed from equidistant sam-
ples separated by a step of length s< 1/2B,

rectB(q) =

{
1 if |q| ≤ B,
0 if q> B.

(3.16)

�s(x) =
∞

∑
i=−∞

δ (x− is) (3.17)

f̂ (q) = F{�s(x) f (x)}rectB(q) (3.18)

where δ (x) represents the Dirac delta function.
As figure 3.1 shows, sampling a signal causes its spectrum to be replicated

in Fourier space. The distance between the replicas is proportional to the sam-

pling frequency due to the scaling property of the Fourier transform. If the

sampling frequency is below the Nyquist rate the spectra will overlap and a

perfect reconstruction is no longer possible. This phenomenon is known as

aliasing (see Fig. 3.2) and is related to eq. 3.15. We call such a signal un-
dersampled. If on the other hand the sampling frequency is higher than the
Nyquist rate, we call it oversampled and we define the oversampling ratio, σ ,
as the ratio between the sampling frequency and the Nyquist rate or, equiv-

alently, the fraction between the center of two replicas of the spectrum in

Fourier space and the region for which the spectrum is different from zero, as

illustrated in figure 3.3.
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Figure 3.1: Reconstruction of a band-limited signal from discrete samples taken at a

frequency higher than the Nyquist rate. The signal f (x) is multiplied with the sam-
pling function (x) corresponding to sampling of the signal by a pixel detector. This
corresponds to replicating the spectrum of the signal in Fourier space. Notice that

there is no overlap of the replicated spectra of the sampled signal in Fourier space

(on the right). It is then possible to recover the original signal by selecting it with an

appropriate rectangular window function rect(q). In real space this corresponds to a
convolution with the corresponding sinc function sinc(x).
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Figure 3.2: Incomplete recovery of an undersampled band-limited signal leading to
aliasing. The process is analogous to 3.1 but with a sampling frequency below the

Nyquist rate. The replicated spectra of the undersampled signal overlap with each

other in Fourier space, and a perfect reconstruction is no longer possible.

Figure 3.3: The oversampling ratio, denoted by σ , is the ratio between the size of the
Fourier space and the region over which the signal is different than zero.
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4. Theory of X-ray Diffraction by
Matter

This chapter gives an overview of the most important tools necessary to
understand X-ray diffraction and provides a simple framework for analysing
most CXDI experiments based on the first-order Born approximation, also
known as "kinematical" or "single-scattering" approximation. This will be of
fundamental importance when we later try to reconstruct the object that gave
rise to a certain diffraction pattern, as it is obviously impossible to do this if
we cannot predict the diffraction pattern that a given object produces.

4.1 Scattering by a free electron

According to classical electromagnetic theory the electric field associated with
a plane monochromatic wave of amplitude E0, frequency ν , propagating along
the z axis (Fig. 4.1a), is given by

Ei(z, t) = E0 exp(2πiν(t− z/c)) . (4.1)

When such a wave travels through an electron of charge e and mass m located

at the origin of a coordinate system, that electron will oscillate in the direction

of the incident electric vector driven by

a(t) =
eEi(0, t)
m

(4.2)

with a frequency equal to the incoming wave. This in turn will make it radiate
an electric field Es, like any accelerating charge. It follows from Maxwell’s

equations that the electric field generated by an accelerating electron measured

at r is given by

Es(r, t) =
ea⊥(t−|r|/c)
4πε0c2r

(4.3)

where ε0 is the permittivity of free space and a⊥ is the acceleration projected
on a plane normal to r, also called the transverse component of the accelera-
tion (Fig. 4.1b) [3]. Finally combining equations 4.1, 4.2 and 4.3 we get that
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Figure 4.1: a) Monochromatic planar wave linearly polarized along the y axis prop-
agating in the positive z direction. b) Transverse component of the acceleration sus-
tained by the electron as observed from the position r. θ is the angle between the

polarization axis and the projection of r on a plane normal to the propagation direc-
tion.

the instantaneous scattered field by a free electron is

a⊥(t) = |a(t)|sinθ (4.4)

Es(r, t) =
e2E0 sinθ
4πε0mc2r

exp(2πiν(t−|r|/c)) . (4.5)

The classical electron radius is defined as

re =
e2

4πε0mc2
(4.6)

which can be used to simplify the electric field expression to

Es(r, t) =
reE0 sinθ

r
exp(2πiν(t−|r|/c)) . (4.7)

The time averaged scattered power per unit area normal to r, also known as
intensity, can then be obtained from the average length of the Poynting vector,

I(r) =
|Emax(r)|2
2ε0c

. (4.8)

where Emax denotes the maximum value of the electric field. The time aver-
aged power per unit area normal to r scattered by an electron is then

I(r) =
r2eE

2
0 sin

2 θ
2ε0cr2

, (4.9)

The total scattered intensity by a free electron as a fraction of the incoming

intensity, can now be calculated by integrating equation 4.9 over a spherical

24



shell of radius 1 around the electron,

I0 =
E20
2ε0c

(4.10)

Is =

2π∫
0

π∫
0

r2eE
2
0 sin

2 θ
2ε0c

sinθdθdφ =
8π
3

r2eE
2
0

2ε0c
(4.11)

σT =
Is
I0

=
8π
3
r2e (4.12)

where I0 represent the incoming intensity, Is the scattered intensity and σT the
ratio between the two, also known as the scattering cross-section for a free
electron, also known as the Thomson cross-section after the British physicist

J.J. Thomson who first derived it in the beginning of the 20th century. Elastic

scattering by a free charged particle is also known as Thomson scattering.

4.2 Scattering by two electrons

If instead of just one electron we have a system composed of two or more
electrons a new phenomenon is observed, interference between the waves

scattered by the different electrons. We will start by looking at the most sim-

ple system where this occurs, one with just two electrons. We will keep the

electron from the previous section at the origin and add a new electron at the

position r. When the system is illuminated by an electric field of amplitude

E0 traveling along s0, both electrons will scatter as described in Eq. 4.7. The
amplitude of the scattered field from each electron is the same but the phase
depends on the relative position of the two electrons (Fig. 4.2).

For an observer located at d in the direction of s, at a distance much greater
than the distance between the electrons the observed total electric field is the
sum of the fields scattered by each of the electrons, which can be approxi-
mated by,

Δl = Δl1+Δl2 = r · (s0− s) (4.13)

E(d) = Es(d)+Es(d)exp(
2πiΔl
λ

) (4.14)

where s0 and s are unit vectors, Δl is the total path difference, Es the elec-
tric field scattered by an isolated electron, λ the wavelength of the incom-

ing field and E the total observed field. This approximation assumes that
|d|−|d−a|<< λ , or put in another way |r|2/(|d|λ )� 1. This approximation
is known as the Fraunhofer approximation and the conditions under which
they are valid are known as the far field regime. “Fraunhofer diffraction” is

a term used to describe diffraction in this regime. Also implicit in this calcu-

lation is the assumption that the scattered field from one electron produces a
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Figure 4.2:Monochromatic planar wave propagating along s0, shines on two electrons
separated by r. The observed scattered electric field on the direction s at a distance |d|
much larger than |r| is the sum of two identical fields separated by a phase difference

dependent on the path difference Δl1+Δl2 [37].

negligible influence on the scattered field of the other electron, that is, multi-
ple scattering can be ignored. This approximation is known as the first-order
Born approximation. It is important to notice that the relative phase between
the two electrons does not depend on the choice of origin and so the observed
intensity is independent of the choice of origin, as it must obviously be.

4.3 Scattering by an arbitrary electron cloud

The two electron framework presented in the previous section can be easily
extended to N electrons by noticing that the electrons scatter independently of

each other. So the scattering of N electrons measured at a point d is given by

E(d) = Es(d)
N

∑
n=0

exp

(
2πirn · (s0− s)

λ

)
. (4.15)

The vector S = s0−s
λ is known in crystallography as the scattering vector and

the surface drawn by the tip of the scattering vector while s is rotated around
a sphere is known as the Ewald sphere.
The continuous case is now easily derived by replacing individual electrons

by an electron density ρ . The scattering from an electron density cloud is then
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described by

E(d) = Es(d)
∫
r
ρ(r)exp(2πir ·S)dr . (4.16)

We can now introduce the structure factor, defined as the ratio between the
scattered field by the system and the scattered field by a single electron,

F(d) =
E(d)
Es(d)

= F
(

d
|d|

)
(4.17)

The structure factor is a more useful quantity than the electric field as it does
not depend on the distance to the detector, only on the direction of the observer
and the structure of the system. For an arbitrary electron cloud the structure
factor as a function of the scattering vector is given by,

F(S) =
∫
r
ρ(r)exp(2πir ·S)dr , (4.18)

which is simply the three dimensional Fourier transform of ρ(r) evaluated
at S. It is for this reason that Fourier transforms are such a useful tool when
studying diffraction, and why they were introduced in the previous chapter.
This formalism was used for the diffraction calculation in paper II.

4.4 Coherence

Throughout the previous sections we have assumed that the incoming wave
was perfectly coherent, both temporaly and spatially (see Fig. 4.3). Temporal
coherence is related to the bandwidth of the wave: the larger the bandwidth the
worse is the coherence. We have assumed monochromatic waves i.e. perfect
temporal coherence. Spatial coherence is a measure of how stable is the phase
relation between two points as a function of time. More accurately it is the
cross-correlation of the field at two locations over time [3].

Coherence is important for diffraction experiments [20, 43] because if, for
example, the spatial coherence of the beam is low, the instantaneous diffrac-
tion pattern of our system will change rapidly during the exposure, but the
integrated pattern will show very few signs of interference between different
parts of the system and so hide its structure. We can see this by comparing the
diffraction pattern obtrain from the field in Eq. 4.14, to the one generated by
replacing Δl/λ by a random term X between −1/2 and 1/2 corresponding to
a random phase difference due to spatial incoherence. In the coherent case we

get:

I(d) ∝ |Es(d)+Es(d)exp(2πiΔlλ
)|2 =

= 2|Es(d)|2+2|Es(d)|2 cos(2πΔl/λ ) (4.19)
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while in the incoherent case we have

E(d,X) = Es(d)+Es(d)exp(2πiX)

I(d) ∝
∫ 1/2

−1/2
|E(d,X)|2dX = 2|Es(d)|2 (4.20)

where I(d) is the observed diffracted intensity. Notice that in the incoherent
case the term 2|Es(d)|2 cos(2πΔl/λ ), which gives information about the rel-
ative location of the two electrons, is not present. This term is usually called

the cross term and is the only one that gives structural information. The other

term is called the self term, and this only gives information about the building

blocks of the system, the electrons in this case, but not how they are organized.

Incoherent
Spatially
Coherent

Spatially and Temporally
Coherent

Monochromatic
Filter

Figure 4.3:Coherence.A light bulb is a source of incoherent radiation, but by passing

it through a pinhole it is possible to make it spatially coherent and by filtering it down

to a single wavelength it is possible to make it temporally coherent.

Motion in the system during the exposure can also produce effects similar

to the ones produced by an incoherent wave, if the motion is of the order of the
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probing wavelength. In a way, one can say that the stability of the sample also

affects the coherence of the diffraction experiment. This effect is analysed in

detail in paper IV.
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5. Image Reconstruction

In the previous chapter we have developed tools that allow us to predict

and calculate the X-ray diffraction pattern from an arbitrary electron density,

using mild assumptions, namely, that we are sufficiently far from the scat-

terer so that the Fraunhofer approximation holds, and that there is no multiple

scattering. In this chapter we will try to tackle the inverse problem, that is,
from an arbitrary diffraction pattern we will try to recover the electron den-

sity that gave rise to it. There are many special experimental conditions under

which this problem can be solved relatively easily such as fourier hologra-

phy [30, 13, 28], ptychography [36, 41], fresnel coherent diffractive imaging

[34, 33], among others. In this chapter we will only deal with the general

problem.

5.1 The Phase Problem

We have seen that a diffraction pattern can be calculated from the Fourier

transform of the electron density. We have also seen in chapter 3 that the

inverse of the Fourier transform is exactly like the Fourier transform, except

with the sign of the exponent swapped. So we should be able to recover the

electron density by,

ρ(r) =

∫
r
F(S)exp(−2πir ·S)dS . (5.1)

In general, F(S) is a complex number and unfortunately it is not possible
to measure F(S), but only its absolute value, also known as its amplitude.
The phase, called sometimes the argument of F(S), is not known and so this
problem is often called the phase problem. One could try to reconstruct the
object assuming that the phases have an arbitrary value, say 0, and use the
experimental amplitudes, the square root of the measured intensities, but this
usually gives an uninterpretable picture. On the other hand, if the phases were
known and the amplitudes unknown, then the resulting picture is still quite
similar to the original, suggesting that the phases carry more structural infor-
mation than the amplitudes (see Fig. 5.1).
If nothing about the object being imaged is known then the problem is un-

determined. For a pattern with N pixels we have 2N unknowns (the real and

imaginary part of the object) but only N constraints. But if we know that the
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Figure 5.1: Portraits of Jean-Baptiste Fourier (a) and Wilhelm Röntgen (b). c) Fourier
synthesis using the amplitudes from b and the phases from a. d) Fourier synthesis
using the amplitudes from a and the phases from b.

object is isolated, meaning the object is surrounded by a constant ρ (e.g.,
sample in vacuum with a surrounding ρ = 0), then in some circumstances it

is possible to solve this problem. The number of pixels of the object must at

least be half of that of the diffraction pattern for the number of unknowns to

match the number of constraints, that is, the oversampling ratio (see Fig. 3.3)

of the image must be equal to or bigger than two, or equivalently the object

must occupy less than half of the field of view. We will call images which

fulfill this condition oversampled.
But this is not enough to solve the problem. In fact it has long been known

that the problem is often undetermined in the one dimensional case [42]. For-

tunately, for higher dimensions, it has been proven that most oversampled

patterns have unique solutions [8]. This difference derives from the fact that

one-dimensional polynomials are factorizable unlike two or higher dimen-

sional ones.

5.2 Image Reconstruction Algorithms

Knowing that the two or higher dimensional phasing problem for oversampled

patterns has a unique solution in most cases can serve as a starting point to

solve the phase problem, but a method to find that unique solution is still

necessary. The phase problem is remarkably difficult since it is neither a linear

nor a convex problem. That makes it a nonconvex problem in a very high

dimensional space, which is a class of problems that is very challenging.
In 1972 Gerchberg and Saxton [19] introduced an iterative algorithm to

solve a related problem, that of obtaining phase information using both the

diffraction pattern and an electron micrograph of a sample. The iteration starts

by Fourier transforming the real space input, ρi(x). The algorithm then re-

places the resulting amplitudes with the square root of the intensities, I(S).
The result is then back Fourier transformed and the amplitudes of the result-
ing images are replaced by the ones from the electron micrograph M(r).
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Figure 5.2: Function to be minimized for a linear (a), convex (b) and nonconvex (c)
optimization problems.

Algorithm 5.1 Gerchberg-Saxton Iteration
Fi(S)←F{ρi(r)}
Fi+1(S)←

√
I(S) Fi(S)|Fi(S)|

ρi+1(r)←M(r) F−1{Fi+1(S)}
|F−1{Fi+1(S)}|

In 1978 Fienup [16], inspired by the above algorithm, introduced the error
reduction algorithm to solve the phasing problem. Instead of using the electron
micrograph as constraints in real space Fienup introduced the concept of a
support function, Π(r), which is equal to 1 where the object is allowed to
reside and 0 otherwise. The iteration is analogous to the Gerchberg-Saxton

Iteration but the last step is replaced by setting all points outside the support

to 0.

Algorithm 5.2 Error Reduction Iteration
Fi(S)←F{ρi(r)}
Fi+1(S)←

√
I(S) Fi(S)|Fi(S)|

ρi+1(r)←Π(r)F−1{Fi+1(S)}

By applying this procedure iteratively it is possible to recover the correct

solution. Unfortunately, more than often the algorithm gets stuck in local min-

ima and cannot find the global minimum.

5.2.1 Iterations as Projections

In 1984 Levi and Stark realized that the above iterations can be interpreted

as projections in Hilbert space [22]. This provides a particularly powerful

method for trying to understand these algorithms. Let us call the replacement

of the Fourier space amplitudes with the square root of the intensities the mod-

ulus projection, Pm, and the replacement of the image outside of the support
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with 0, the support projection, Ps. If one treats the real space image as a vec-
tor in a high dimensional space, with one dimension per pixel, then it is easy

to see that Ps is the projection into the hyperplane spanned by the dimensions
corresponding to pixels inside the support. The modulus projection can also be
interpreted as a projection in the space of the pixels of the diffraction pattern,
where each pixel contributes two dimensions, the real part and the imaginary
part (see Fig. 5.3).

Figure 5.3: a) Support projection for a 3 pixel image where the support is composed
of pixels 2 and 3. b)Modulus projection for 1 pixel of the diffraction pattern.

Due to the distance preserving property of the Fourier transform the modu-
lus projection is also a projection in real space. The biggest difference between
the two projection is that while the support constraint set is convex, the mod-
ulus constraint is not, that is to say, not all points between two points of the
modulus constraint set belong to the modulus constraint set.

In this framework of projections the Error Reduction algorithm is simply
the modulus projection (Pm) followed by the support projection (Ps). The fact
that it stagnates can then be easily understood in connection to the non con-

vexity of the modulus constraint as Fig. 5.4 illustrates.

In 1982 Fienup introduced the Hybrid Input-Output(HIO) algorithm [17]
which is defined as:

Algorithm 5.3 Hybrid Input-Output Iteration
Fi(S)←F{ρi(r)}
Fi+1(S)←

√
I(S) Fi(S)|Fi(S)|

ρ ′(r)←F−1{Fi+1(S)}
ρi+1(r)←Π(r)ρ ′(r)+(1−Π(r))(ρi(r)−βρ ′(r))

which can also be represented with projection operators [40] as:

ρi+1 = ρi+β
[
Ps((1+β−1)Pm(ρi)−β−1ρi)−Pm(ρi)

]
. (5.2)
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Figure 5.4: Successive iterations of the Error Reduction algorithm represented as in-

terconnecting vectors of different shades of orange. The algorithm stagnates on a local

minimum due to the non convexity of the modulus constraint set.

This means that the change in each iteration is a sum of a point projected

onto the support constraint minus a point projected onto the modulus con-

straint all scaled by a relaxation factor β (see Fig. 5.5). If the separation be-

tween the two projections is large, the step length will be large and the algo-

rithm will probably explore some other areas. This means that the algorithm

is quite good at getting out of local minima, but also means that if the sets

never get too close (due to noisy data for example), this algorithm will have

a difficult time keeping close to the best solution, even though it might pass

through it.

Figure 5.5: One iteration of the HIO algorithm assuming the origin is at ρi. Note that
the iteration does not end at the surface of the constraint set.

The HIO algorithm was a tremendous improvement and it is still widely

used today. It is probably the most popular algorithm for phase retrieval.
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5.2.2 Shrinkwrap algorithm

While the HIO algorithm produces very good results when a tight support
is known, for many applications it is hard to know in advance the shape of
the support, and a support that is too large can make phasing impossible in
practice.
In 2003 Marchesini [27] introduced the Shrinkwrap algorithm which does

not require the support function as input and tries instead to deduce it during

the reconstruction. It does so by starting with a support derived from the au-

tocorrelation, where all pixels above a certain threshold are included in the

support. It then refines the support every n iterations by blurring the current
best guess of the object and keeping in the support only those pixels that are

above a certain threshold of the maximum pixel value. The value of n is typ-
ically a couple dozen iterations. The idea of the algorithm is that even with
a bad support some features of the objects will start to show up, so it makes
use of those recovered features to improve the support. This algorithm has
been remarkably successful in reconstructing several experimental data sets
[10, 5, 4] and was also used for image reconstruction in papers I,III and IV.

5.3 Image reconstruction software

Even though there is a large number of algorithms and techniques published

for image reconstruction from CXDI diffraction patterns, there is, to our

knowledge, no publicly available software package that integrates all these

tools into an easy to use package.
Hawk, is an open source software package for data processing, which is be-

ing developed in Uppsala, with the aim to fill this gap (paper V). It is publicly
available under the GNU General Public License at ����������	
��
��

������� and implements the following phasing algorithms: HIO [17], RAAR

[25], difference map [14], HPR [7], HAAR [6], ESPRESSO [26] and charge

flipping [31, 32]. It is also capable to leverage graphic processing units, us-

ing the Compute Unified Device Architecture(CUDA) providing very large

speedups, between 10x to 50x, compared to classic CPU based programs.
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6. Perspectives

LCLS has just started user operations. A revamped FLASH will come back

to life in August 2010. Fermi in Trieste will become operational in the autumn,

and the European XFEL will be ready in 2014. In the meantime, table-top and

pocket-sized instruments are popping up. These are very interesting times. The

experimental verification that it is possible to obtain a high resolution image

of a sample using ultrafast CXDI before the sample is turned into plasma

(Paper I) opens the door to many exciting possibilities in the field of structural
biology and nano imaging in general.

High resolution 2D CXDI pictures of unmodified large biological entities
such as cells and organelles are already in our reach. The refinement of ex-
perimental conditions and the accumulated experience is likely to bring the
resolution achieved in line with the radiation damage limit (Paper VI).
The possibility of obtaining high resolution 3D structures of reproducible

objects such as virus or proteins is within our horizon. Still formidable prob-
lems have to be tackled, due to the extremely low signal to noise levels ex-
pected from the diffraction patterns of such small samples, even when using
the spectacular brilliance of X-ray FELs. Another challenge is assembling
several 2D diffraction patterns into a 3D diffraction volume when the orien-
tation of the sample is unknown and the noise is large. But several papers
have shown that the problem is tractable [15, 24, 18], all what is missing is an
experimental demonstration. The computational cost of these approaches is
extremely high so a strong investment in high performance parallel software
allied with a similar investment in hardware will be crucial to bring these ideas
to fruition. GPUs are expected to play an important role in this respect as they
are progressing faster than CPUs and for most CXDI related algorithms they
are much more efficient in terms of number of computations executed per
energy used.
The potential for pump-probe experiments is also enormous and only now

starting to be fully realized. Photo-activated reactions are particularly exciting
in this regards, such as imaging photosynthesis as it happens.
The quality of the beam produced by the newly built X-ray FELs is also

continuously improving leading to better resolution, both temporally and spa-

tially.

We are at a start of a revolution when it comes to structural sciences. The
future is most promising!
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7. Sammanfattning på svenska

Mänskligheten har alltid haft en fascination för att kunna se oändligt små
saker. Sedan uppfinningen av mikroskop har människor försökt att hitta sätt
att titta på mindre och mindre saker. Optisk mikroskopi är otroligt bra men
upplösningen är i grunden begränsad av våglängden för synligt ljus, vilken är
runt 400nm för ultraviolett ljus.

Uppfinningen av röntgenkristallografi i början av nittonhundratalet gjorde
det möjligt att observera strukturer mycket mindre än våglängden för synligt
ljus. Vid kristallografi används vanligtvis ljus med en våglängd runt 1 Å, 4000
gånger mindre än violett ljus. Detta betyder att det är möjligt att observera
saker som är 4000 gånger mindre.

Tyvärr har röntgenstrålning några nackdelar jämfört med synligt ljus, det
viktigaste av allt är att dess brytningsindex alltid är mycket nära ett vilket
innebär att det i praktiken är omöjligt att bygga konventionella linser. Därför
finns det ingen exakt motsvarighet till optiska mikroskop. Istället för att
avbilda föremålet direkt är det bästa vi kan göra att mäta diffraktionsmönster.
Diffraktionsmönstrett skiljer sig helt från objektet självt, men under vissa
förhållanden är det möjligt att rekonstruera bilden av objektet från dess
diffraktionsmönster, detta kallas för fasning. Svårigheten med fasningen är
att det inte är möjligt att direkt beräkna objektet som gav upphov till ett
visst diffraktionsmönster. Istället måste man beräkna diffraktionsmönster
från många objekt tills man hittar ett som passar det experimentella
diffraktionsmönstret. Detta kan ses som att vi ersätter linsen i det optiska
mikroskopet med en dator (se Figur. 7.1).

En annan svårighet med att avbilda mycket små strukturer är att de sprider
ljuset mycket svagt. Inom Röntgenkristallografi löses detta problem genom
användandet av kristaller som består av många små identiska objekt. Koher-
ent avbildning med röntgendiffraktion (CXDI, från engelskans “Coherent X-
ray Diffractive Imaging”) använder mycket intensiva ljuskällor, endast möjligt
tack vare nyutvecklade röntgenlasrar, för att uppnå samma mål. Problemet
med mycket intensiva ljuskällor är att de förstör vårt prov, på samma sätt som
en stark laser kan bränna objekt. För att lösa detta problem använder CXDI en
annan egenskap hos röntgenlasrar, det faktum att röntgenstrålarna produceras
i extremt korta pulser. Detta gör det möjligt att få en bild av vårt prov precis
innan det bränns upp av lasern.
Denna avhandling presenterar några av de första resultaten av CXDI

med röntgenlasrar. Den undersöker också numeriskt några av de problem
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Figure 7.1: Jämförelse av avbildning med en lins och diffraktionsavbildning där lin-
sen ersatts med en fasningsalgoritm i en dator.

som måste lösas för att denna teknik ska kunna bli lika vanlig som

röntgenkristallografi.
Idag finns det relativt få bilder som erhållits genomCXDI eftersom de första

röntgenlasrarna med tillräcklig prestanda nyligen färdigställts och många de-

taljer fortfarande optimeras. Allt pekar dock på en enorm ökning av använ-

dandet av tekniken och en stor förbättring av upplösningen. Vi står idag vid

början av en revolution av vetenskapen om strukturbestämmning. Framtiden

är mycket lovande!
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