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Abstract
Liu, J. 2020. Towards Fast and Robust Algorithms in Flash X-ray single-particle Imaging. 
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and 
Technology 1905. 79 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0877-7.

Modern X-ray Free Electron Laser (XFEL) technology provides the possibility to acquire a large 
number of diffraction patterns from individual biological nano-particles, including proteins, 
viruses, and DNA. Ideally, the collected data frames are high-quality single-particle diffraction 
patterns. However, unfortunately, the raw dataset is noisy and also contains patterns with 
scatterings from multiple particles, contaminated particles, etc. The data complexity and the 
massive volumes of raw data make pattern selection a time-consuming and challenge task. 
Further, X-rays interact with particles at random and the captured patterns are the 2D intensities 
of the scattered waves, i.e. we cannot observe the particle orientations and the phase information 
from the 2D diffraction patterns. To reconstruct 2D diffraction patterns into 3D structures of the 
desired particle, we need a sufficiently large single-particle-pattern dataset. The computational 
methodology for this reconstruction task is still under development and in need of an improved 
understanding of the algorithmic uncertainties.

In this thesis, we tackle some of the challenges to obtain 3D structures of sample molecules 
from single-particle diffraction patterns. First, we have developed two classification methods to 
select single-particle diffraction patterns that are similar to provided templates. Second, we have 
accelerated the 3D reconstruction procedures by distributing the computations among Graphics 
Processing Units (GPUs) and by proposing an adaptive discretization of 3D space. Third, 
to better understand the uncertainties of the 3D reconstruction procedure, we have evaluated 
the impact of the different sources of resolution-limiting factors and introduced a practically 
applicable computational methodology in the form of bootstrap procedures for assessing the 
reconstruction uncertainty. These technologies form a data-analysis pipeline for recovering 3D 
structures from the raw X-ray single-particle data, which also analyzes the uncertainties. With 
the experimental developments of the X-ray single-particle technology, we expect that the data 
volumes will be increasing sharply, and hence, we believe such a computational pipeline will 
be critical to retrieve particle structures in the achievable resolution.
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Part I:
Motivation





1. Introduction

The wavelength of the probing light is a fundamental factor that limits
our ability to observe small objects. To determine nanoscale structures,
X-rays with wavelengths down to a few Angstroms are essential. How-
ever, X-rays interact weakly with matter. When illuminating an object
with X-rays, only a small fraction of it will be elastically scattered,
which provides signals containing the structural information. Other
forms of energy transfer, such as Compton scattering and photon ab-
sorption, will cause radiation damage and lead to degradation of the
scattering signal, resulting in recovered structures in low resolution or
with artifacts.

A traditional way to use X-ray in structural biology is X-ray crystal-
lography, and it requires to crystallize samples to a certain minimum
size to run out radiation damage and enhance scattering signals. Un-
fortunately, due to conformational flexibility, not all molecules can be
packed, i.e., forming high-quality crystals is hard or even impossible
for flexible molecules.

Thanks to the advent of Modern X-ray Free Electron Laser (XFEL)
technology [55, 60], we have possibilities to explore biological structure
without packing sample molecules into crystals. The so-called “diffract
and destroy” [14] strategy uses ultra short and extremely bright X-ray
pulses, produced by XFELs, to create interpretable diffraction signals
before the samples explode and turn into a plasm [66]. Since then, the
approach has caught considerable attention in structural biology [39,
13, 9, 45, 26].

The state-of-the-art method using the “diffract and destroy” strategy
is the Flash X-ray single-particle diffraction Imaging (FXI), or sometimes
referred to as the X-ray Single-Particle Imaging (SPI) [3]. In an FXI
experiment, a stream of particles is injected into the X-ray beam, and
hit by the extremely intense X-ray pulses, producing 2D diffraction
patterns showing the illuminated objects at random orientations. Due
to the high repetition rate of XFELs and the stochastic nature of FXI
experiments, the readouts from the digital detectors are of varying
qualities, and a large portion consists of empty frames without any
scatterings from sample particles. We also obtain a substantial amount
of scatterings from contaminants and multiple sample particles. The
most interesting readouts are the single-particle diffraction patterns,
i.e. the frames containing scatterings from just one sample particle, and
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unfortunately, most of the readouts are not single-particle diffraction
patterns. Further, the readouts from digital detectors are intensities
without phase information and have varying beam intensities from
shot to shot.

Since FXI studies relatively small sample particles and capture diffrac-
tion intensities in the far-field, the diffraction patterns on the detectors
are continuous signals and are in the Fourier domain. Oversampling
is therefore used to retrieve phase information [62, 31, 78, 61]. Further,
considering that many biological particles exist in identical copies at
the resolution scales of relevance, the 2D diffraction patterns can be
treated approximately as differently oriented exposures of the same
particle, and hence 3D structures can be obtained by averaging the 2D
diffraction patterns with the recovered particle orientations. To obtain
3D intensities of sample particles in the real-space, we can perform a
two-stage procedure — reconstruct the 3D Fourier intensity first and
then retrieve the 3D phase information [53, 16, 7, 76]. Alternatively,
it is also possible to combine the phasing algorithms with the rotation
determination [22, 48].

Owing to the XFELs facilities and the efforts made for FXI technol-
ogy, a lot of FXI experiments have been performed with both artificial
and non-artificial samples. The first FXI experiment took place at the
soft X-ray Free-electron LAser in Hamburg (FLASH) (formerly known
as the VUV-FEL) using artificial samples [14]. Later in 2011 [81], FXI
experiments with a higher photon flux and harder X-rays succeeded
on Mimivirus particles at the LINAC Coherent Light Source (LCLS).
Although the resolution achieved was limited to 32 nm for the 2D
project images [81], this experiment was still encouraging as a proof-of-
concept. Since then, FXI attracted more and more attention in the com-
munity. In 2014, another promising 2D structure of carboxysomes [37]
was published, and its best resolution was better than the detector-edge
resolution. In 2015, a follow-up study on the mimivirus dataset [81]
reported the first 3D FXI structure [26] at a full-period resolution of 125
nm. The 3D resolution was remarkedly inferior to the one achieved in
2D from individual patterns, due to the heterogeneity of the mimivirus
and the limited number of diffraction patterns. Later, smaller and more
homogeneous viruses, the Rice Dwarf Virus (RDV) [64], the PR772
virus [75] and the Paramecium bursaria Chlorella virus (PBCV-1) [72],
were selected as sample particles, and then reconstructed to 3D struc-
tures [42, 48, 76, 72].

Other than building huge facilities and experimenting on different
samples, scientists and engineers are seeking possibilities to improve
FXI for higher resolution and quality. The beam focus and wavefront
are one of the key issues [5] for FXI experiments, and by optimizing
the positions and the angles of mirrors [40, 20], it is possible to have
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nano-focusing and Gaussian-like beam shape. The sample delivery
technology is also developing as the size of the droplets shrink down
to inject single particles more efficiently [21, 82, 46, 37, 79]. Various
types of digital detectors are in use to cope with the different beam
characteristics at different facilities [84, 8, 35, 1, 44, 43], and software
libraries are available for optimizing FXI experiments parameters [94],
simulating diffraction patterns [36], monitoring online data [19], data
converting [18], data management [88], data bank [57], data prepro-
cessing [4], phase retrieving [56], etc.

In this thesis, we address the following challenges of FXI technology
and contribute methods and software to solve them:
• Newer facilities, such as the European XFEL, aim to increase data rates

and qualities. The European XFEL [2] is capable of acquiring 27,000
patterns per second — 225 times faster than the Linac Coherent Light
Source (LCLS) [12], and more than 450 times faster than the Spring-
8 Ångström Compact free-electron LAser (SACLA) [86]. With the
increasing XFEL repetition rate and interest in FXI experiments, we
foresee huge volumes of FXI data. Unfortunately, due to the stochas-
tic nature of the FXI experiments, the large volumes of the readouts
from detectors will include scatterings from contaminated samples to
a varying degree with low hit rates [85]. Further, the heterogeneity
of the sample biomolecules is unavoidable, especially at high reso-
lution, as biologically essential functions proceed via structural and
conformational changes [3]. To study the sample structure, we need
to extract single hits from the massive data volumes and deal with
sample heterogeneity. Moreover, FXI diffraction patterns are ran-
domly oriented, and most rotation recovery approaches rely on the
assumptions of identical objects in different projections [37, 73], i.e. we
have to handle the structure heterogeneity before aligning 3D objects.
In this thesis work, we made efforts in handling data complexity and
volumes by selecting high-quality and homogeneous single-particle
diffraction patterns using machine learning algorithms.
• The particle orientations are unobservable in current FXI experi-

ments, and hence extra steps to compute relative rotations are nec-
essary for 3D alignment. The current preferable method for orien-
tation determination is the Expectation-maximization-compression
(EMC) [53, 52] algorithm. This method is computationally very de-
manding. Firstly, a large number of computations is needed to fit
each diffraction pattern into the discretized rotational space. Second,
a large number of FXI patterns is fundamental for achieving high res-
olution and balancing the weak photon signal when studying smaller
objects. There is an imminent need for a massively parallel imple-
mentation of the 3D reconstruction algorithm to keep up with the
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increased data rates. Our proposed distributed computation scheme
allows EMC to run on many nodes with a nearly linear speedup.
• To better understand the 3D structure of the sampled particles would

require high-resolution 3D reconstructions along with a comprehen-
sive understanding of the uncertainty propagation in the reconstruct-
ing procedure. Adopting bootstrap methodology, we may analyze
uncertainties in both the Fourier domain and in the real-space. With
a proper cutoff, we can determine the resolution of a 3D structure
directly from the uncertainty analysis.
• Manual data analysis is no longer an option for FXI experiments, with

the high XFEL repetition rate and the growing interests of different
samples. We such proposed a (semi-)automatic data analysis pipeline
with multiple components including selecting desired patterns, align-
ing patterns into 3D volumes, converting Fourier intensity into the
real domain, analyzing uncertainties, removing unwanted features,
etc. The idea is use the pipeline for determining 3D structures di-
rectly from the detector readouts during an FXI experiment in the
near future.
To summarize, this thesis brings an improved multi-step data-analysis

pipeline into FXI experiments. With our pipeline, we can now process
raw FXI data to reconstruction 3D models of the sample molecules
quickly and robustly, along with a better understand of uncertainties
in the models.
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Part II:
Concepts and Technology





2. Diffractive Imaging with XFELs

A photon interacts with an atom in different ways, for example, elastic
scattering, photon absorption, and Compton scattering, etc. Among
them, elastic scattering is the most “useful” form, in that it gives scat-
tering signals containing structural information. Unavoidably and un-
fortunately, a significant fraction of X-rays is not elastically scattered
and will lead to structural damage [15, 95], and the scattering signals
are also degraded, which may lead to poor resolution and artifacts in
the structure.

The concept of “diffraction and destruction”, which was brought up
in 2000 [66], and experimentally demonstrated in 2006 [14], makes use
of the fact that the time scale of X-ray diffraction is much shorter than
the radiation-induced sample degradation. Today, femtosecond X-ray
pulses produced from modern XFELs achieve the power density of
more than 1016 W/cm2 per pulse with a micron-sized focus. And hence,
modern XFELs allow capturing interpretable diffraction signals from
single particles before a significant structural change occurs. The tech-
nology that captures 2D diffraction images from single particles using
XFEL pulses is typically named Flash X-ray single-particle diffraction
Imaging (FXI) or X-ray single particle imaging (SPI).

Thanks to the high repetition rate of XFELs, we obtain enormous data
from FXI experiments. For example, SPring-8 Angstrom Compact Free
Electron Laser (SACLA) operates at 60 Hz [86], Linac Coherent Light
Source (LCLS) at 120 Hz [12], and the European XFEL [2], is capable of
acquiring up to 27,000 diffraction patterns per second. This incredible
rate leads to sharply increasing data volumes, and allows study single
molecules either in 2D or in 3D by aligning multiple diffraction patterns
into their relative rotations.

In this chapter, we introduce the key terminologies of XFEL in §2.1
and the theory behind diffractive imaging in §2.2. We also briefly
describe the methods to solve the phasing problems and retrieve the
rotations of the diffraction patterns in §2.3 and §2.4, respectively.

2.1 XFELs
The XFELs are X-ray light sources that allow researchers to study the
structure of matter at the atomic level. All XFELs are large facilities
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equipped with a long accelerator and a huge undulator. Typically, as
shown in Figure 2.1, electrons are accelerated to nearly the speed of
light by an accelerator. Then those electrons bunches pass an undula-
tor, which is a periodic array of magnets with alternating poles, to be
enhanced and shortened until an extremely intense X-ray flash is finally
created.

Figure 2.1. An illustration of XFEL components. Modern XFEL facilities use
either linear or circular accelerator, followed by a periodic array of magnets
(undulator). The accelerated and coherent electrons generated by the undula-
tor hit a target generating the X-ray pulses with the desired wavelength and
intensity.

2.1.1 Accelerator
An accelerator typically has three major components. To start with,
it needs an electron gun to produce bunches of electrons. Electrons
can be generated by a cold cathode, a hot cathode, a photocathode, or
radio frequency (RF) ion sources, etc. Then, electrons travel through a
vacuum chamber, accelerating by the electromagnetic field.

Modern XFEL facilities use either a linear or a circular accelerator.
The design of different types of accelerators give different properties
and advantages. In a linear accelerator, electrons travel down a long,
straight track and the electromagnet keeps the particles confined in
a narrow beam. Typically linear accelerators are huge and are kept
underground. An example of a linear accelerator is Linac at the Stanford
Linear Accelerator Center (SLAC) in California, which is about 1.8 miles
(3 km) long.

Circular accelerators do mainly the same jobs as linear accelerators.
However, instead of using a long straight track, they move the elec-
trons around a circular track many times. The advantage of circular
accelerators is that the ring topology allows continuous acceleration,
and they are therefore typically smaller than a linear accelerator of
comparable power. However, electrons accelerated radially may emit
synchrotron radiation leading to undesired energy loss. For this reason,
many XFELs use linear accelerators.
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2.1.2 Undulator Radiation
Although an accelerator is powerful enough to speed up electrons to
nearly light speed, the problem is that the lengths of electrons bunches
from an accelerator are much longer than the desired wavelength of an
XFEL pulse. To shorten the wavelengths of electrons bunches, XFEL
uses a periodic array of magnets with alternating poles across the beam
path to wiggle and concentrate the electrons in the magnetic field gen-
erated by the XFEL undulator.

The XFEL undulator is a periodic array of magnets with alternat-
ing poles across the beam, see Figure 2.2. Due to the Lorentz force
of the magnetic field, the undulator forces electrons in the beam to
wiggle transversely, traveling along a sinusoidal path about the axis
of the undulator. The transverse acceleration of electrons will release
monochromatic but incoherent photons, and the power of the radiation
scales linearly with the number of the electrons. The wavelength of the
undulator radiation λ is a function of the undulator period λu,

λ(θ) =
λu

2γ

(
1+

1
2

K2+ (γθ)2
)
, (2.1)

where θ is the divergence angle, and γ is the relativistic Lorentz factor,

γ =

(
1− v2

c2

)−1/2

. (2.2)

Further, K is the undulator strength,

K =
λueB0

2πmec
≈ 0.9337B0λu, (2.3)

where B0 is the magnetic field strength of the undulator, e is the electron
charge, me is the electron mass, c is the speed of light, and v is the speed
of the electrons.

Eq. (2.1) is often referred to as the undulator equation. By manipulat-
ing the parameters: the speed of electrons v , the magnetic filed B0, the
divergence angle θ, and the unduator period λu, XFELs may produce
X-ray pulses with the desired wavelength,

λr =
λu

2γ

(
1+

1
2

K2
)
. (2.4)

2.1.3 Microbunching and Self Amplified Stimulated
Emission (SASE)

Self Amplified Stimulated Emission (SASE) [63] allows the pulse energy
to grow exponentially in the XFEL undulators. Initially, electrons enter
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an undulator with random phases, and hence the emitted radiation is
incoherent as illustrating in Figure 2.2 (left). In the magnetic fields,
electrons interact with the emitted radiation, forcing faster electrons to
lose energy and slower ones to gain energy. The result is a modulation
of the longitudinal velocity, which eventually leads to a concentration
of the electrons in slices. The electron slices are called microbunches
and located close to the positions where maximum energy transfer to
the light wave can happen. The microbunching process leads to an
exponential growth of the radiation power along the undulator, and
the exponential growth stops when the electrons are strongly bunched,
and begin to debunch, showing in Figure 2.2 (right). Moreover, the
SASE process is stochastic, and hence, the emitted radiations have a
shot-to-shot intensity fluctuation.

Figure 2.2. An illustration of the XFEL undulator. Initially, electrons are in
random phases, and the radiation is incoherent. At the end of the undulator,
electrons are microbunched and the radiation is coherent.

2.2 Diffractive Imaging
2.2.1 2D Diffraction Pattern Acquisition
For a typical FXI experiment, the diffraction data is acquired according
to the scheme in Figure 2.3. As in the illustration, a stream of inflow
samples of biomolecules is injected into the X-ray beam by injectors,
such as gas injector [10], liquid injector [90], lipidic cubic phase (LCP)
injector [91], etc. X-ray pulses generated from XFELs interact with
sample biomolecules at random, and the captured signals on the de-
tector can be diffraction signals from single biomolecules or a cluster
of biomolecules, or from a background, or even from contaminants. To
proceed further data analysis, we need fast and accurate algorithms to
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classify and select high-quality diffraction patterns from the raw frames
(see more details in Paper I and in §4). Further, we lose the following
information during the process: the phases of the diffraction signals, the
orientations of samples, and the X-ray pulses instantaneous intensities
at the interactions. Moreover, we may have missing pixel values due to
the physical arrangement of the detector, saturation, and faulty pixels.
The direct beam — the unscattered wave passes through the hole at the
center of the detector and is then collected by a beam stop. Sometimes
pixels around the hole are saturated and may hence be considered as
missing information. The algorithms for retrieving missing phases and
orientations are discussed in §2.3 and §2.4, respectively.

2.2.2 Data Recording
As shown in Figure 2.3, we typically use 2D digital detectors containing
massive pixels, such pnCCD cameras. In a general FXI setup, we may
include two pairs of detectors, namely a front and a back detector. The
back detector, the one illustrated in Figure 2.3, captures the signals from
the lower scattering angles, and allows the direct beam to pass through.
Comparing with the back detector, the front detector is much closer to
the interaction region, and opened to allow the passing of the scattered
waves to the back detectors. The data used in this thesis were from the
back detector, which consists of two moveable halves, with an empty
strip in between, and a central hole for the unscattered signal (the direct
beam).

Other than the detector geometry, the saturation of the detector also
leads to missing information. Pixels of digital detectors can only hold
a certain amount of electrical charge. Charges can overflow to the
neighbouring pixels if the incoming changes exceed the maximal value,
a phenomenon called saturation. Saturated pixels are usually located
in the center of the detector, as the scattered signals are much stronger
there.

Given that the small angle approximation holds for FXI experiments,
we can approximate the pixel size in real space (scattering potential
space) dr as follows:

dr =
λd
dp
, (2.5)

where d is the object-detector distance, andλ is the wavelength. Further,
dp is the physical Euclidean distance of a pixel to the detector center.
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(a)

(b) (c) (d) (e)

Figure 2.3. An illustration of a typical FXI experiment. A flow of incoming
samples interacts with X-ray pulses, and the detector captures the intensities
of the scattered waves. At the center of the detector, there is a hole for the
unscattered waves. This figure is adapted from Paper III. The readouts from
detectors ([(b)–(e)]) are scatterings to varying degrees. (b) was a blank frame
which contains only background scattering. Due to the low hit rate, most
readouts from the detector are blank frames. [(c) and (d)] were frames from
multiple particles or with contaminants. (e) was a single-particle frame from
an icosahedron virus with a relatively strong fluence. Currently, single particle
patterns are the most interesting patterns, which can be used to assemble 3D
structures.
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2.2.3 Prediction of 2D Diffraction Patterns
According to classical diffraction theory [71], we may consider a sample
particle as a collection of infinitesimal point scatterers for coherent
diffractive imaging (CDI). Let an XFEL pulse (a coherent-plane wave k0)
illuminate the samples at position x and the scattered wave propagate
along the wave vector k1. The detector then captures the scattered
wave at position x′. Vectors k0 and k1 have the same length since
we only consider elastic scattering. The scattering vector q = k1 −k0

lies on the Ewald sphere in the diffraction / reciprocal / Fourier space.
Figure 2.4 illustrates the simplified geometry of FXI (plane-wave CDI)
experiments in both Fourier and real space.

Figure 2.4. Geometry for plane-wave CDI in the real space (left) and the Fourier
space (right). The wave vectors k1 and k0 have the same length, and the
scattering vector q lies on the Ewald sphere in the Fourier space.

To simulate FXI experiments with single particles with relative small
sizes, we only consider the single scattering events. By applying the
first order Born approximation (the single-scattering approximation)
to the Maxwell’s equations, we may write the scattered wave ΨΨΨ(x′) as
the sum of the incoming plane wave ΨΨΨ(0)(x′) and the scattering wave
ΨΨΨ(1)(x′):

ΨΨΨ(x′) =ΨΨΨ(0)(x′)+ΨΨΨ(1)(x′)

=Ψ0 exp(ik0x′)+Ψ0

�
ψ(x)exp(ik0x)

exp(−ik|x′ −x|)
|x′ −x| dx, (2.6)

where x is the position of scatterers inside a sample, x′ is the projected
position of the scattered wave k1 on the detector as shown in Figure 2.4,
and k is the wave number. Further,Ψ0 is the amplitude of the incoming
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waveΨΨΨ0, and the scattering potential ψ(x) is

ψ(x) =
k2

4π
[1−n2(x)], (2.7)

with n(x) is the refractive index.
Since the detector captures the scattered wave at the far field, i.e.

the propagation distance r = |x′ −x| is much larger than the size of the
sample, we may simplify Eq. (2.6) as follows:

ΨΨΨ(1)(q) =Ψ0r−1
�

ψ(x)exp(−iqx)dx

=Ψ0r−1(2π)3/2F [ψ(x)](q), (2.8)

with q = k1−k0 the scattering vector as shown in Figure 2.4. Further,
F is the continuous Fourier transformation (FT). For any well-behaved
function h(x) in l Euclidean dimensions,

F [h(x)](q) = h̃(q) = (2π)−l/2
∫
Rl

h(x)exp(−iqx)dx. (2.9)

For FXI experiments, the diffraction pattern does not contain infor-
mation for the full 3D structure of the sample, but has the structural
information from the Ewald sphere, which is orthogonal to the plane
wave vector k0. Without loss of generality we assume that the diffrac-
tion wave propagates along the z axis, and the 2D scattered wave of
Eq. (2.8) is now

ΨΨΨ
(1)
⊥ (qx,qy) =Ψ0r−1

�
ψ⊥(x, y)exp(−i(qxx+ qyy))dxdy,

=Ψ0r−1(2π)1/2F [ΨΨΨ(1)(x, y)](qx,qy) (2.10)

with

ψ⊥(x, y) =
∫
ψ(x, y,z)exp(−iqzz)dz. (2.11)

Moreover, the detector can only measure the intensity of the scattered
wave, and hence we write the expectation value of scattered photons
measured in pixels (without noise and assuming no signal loss) as
follows:

I = |ΨΨΨ(1)
⊥ (qx,qy)|2P(Θ)Ω(Θ), (2.12)

withΩ(Θ) is the solid angle covered by the detector pixels, and P(Θ) is
the polarization factor of the incoming beam. For XFELs, the undulator
radiation is linearly polarized, therefore P(Θ)≈ 1. A detailed derivation
of the scattered wave from single particles can be found in [38].
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2.3 Phase Retrieval
The captured diffraction signals are intensities of the scattered wave,
hence excluding the phase information of the scatterings. To retrieve
structures from diffraction intensities, we need to robustly recover the
phase information.

2.3.1 Phase Retrieval Algorithms
Back in 1972, Gerchberg and Saxton [33] proposed an iterative algo-
rithm for retrieving phases from scattering intensities, and it became
the foundation of today’s iterative phase retrieval algorithms. Their
strategy is to apply the FT and its inverse back and forth in iterations
between the real-domain and Fourier-domain constraints. In 1978,
Fienup [30] applied Gerchber-Saxton strategy under the condition of
CDI imaging, i.e., the amplitudes in the Fourier domain and the sup-
port in the real domain are known, and he named his algorithm error
reduction algorithm (ER) (see Algorithm 1). In the ER algorithm,the
real-space is split into two sub-regions: within a defined boundary
and outside of the boundary. The sub-region within the boundary is
allowed to have a density and the other parts are forced to be empty.
The sub-region allowed to have a density is usually called the object’s
support. The Fourier domain constraint is that the Fourier transform
of the object should match the square root of the measured intensities.
The ER algorithm treats the phase retrieving problem as a convex opti-
mization problem, however the set of Fourier-domain constraints is not
convex, so ER might be easily trapped by local minima, see graphical
illustration of ER algorithm in Figure 2.5.

Figure 2.5. The solution to the phase problem has to fulfil both the real-space
constraint and the Fourier-space constraint.
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Algorithm 1: Error reduction (ER) algorithm.

Input: A diffraction pattern and a support.
Output: The recovered object density and phases.

1: Assign a random phase to every pixel of the amplitude of
diffraction pattern.

2: while the recovered phase is not accurate enough do
3: Inverse Fourier transform the pattern.
4: Set all pixels outside the support to zero in the real domain

(apply the real-domain constraint).
5: Fourier transform the object in the real domain.
6: Replace the amplitudes with the experimentally measured

amplitudes, but keep the phases (apply the Fourier-domain
constraint).

7: end while

To escape from local minima, Fienup [30] developed the hybrid
input-output algorithm (HIO). The workflow of HIO is identical to
ER, except that the pixels outside the support are no longer empty, but
implemented via a negative feedback term. Another popular modifi-
cation of ER is the Relaxed Averaged Alternating Reflections algorithm
(RAAR) [54], which has a negative feedback term similar to HIO and
slightly modifies the update rule of pixels inside the support. RAAR
behaves intermediately between ER and HIO, and escape only shal-
lower local minima. Other iterative phase retrieval algorithms using a
support include the difference map [27], Saddlepoint optimization [58],
and Hybrid projection reflection[6].

HIO and RAAR requires the support to follow the shape of the actual
object tightly, and in practice, the object shape is most-likely unavail-
able. In 2003 Marchesini developed an algorithm called Shrinkwrap
[59] to deduce the shape of the support during the phase retrieve iter-
ations. It update the supports by applying a Gaussian blur to the real
space image and selecting the pixels that have a value above a certain
threshold periodically.

2.3.2 Validation
Due to the concave constraints in the Fourier domain, we need to
identify failed phase searches, which typically have high errors in both
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the Fourier domain E f and the real domain Er:

E f =

√√√√∑Mpix

i=1 (|h̃i| −
√

Ii)2∑Mpix

i=1 Ii

, (2.13)

and

Er =

√∑
i∈S̄(|hi|)2∑
∈S̄∪S |hi|2 , (2.14)

where S is the object’s support, S̄ is the area outside of S. Further, h is
the recovered pixel intensity of the object in the real space, while h̃ is
the recovered wave in pixels in the Fourier space, Mpix is the number
of pixels, and Ii the ith pixel value of a diffraction pattern. Note that a
recovered intensity in real space is quite often called reconstruction.

As described in Algorithm 1 (step 6), we are seeking for the best match
between the amplitudes of diffraction patterns and the recovered sig-
nals (the Fourier-domain constraints) in the ER algorithm, i.e. Eq. (2.13)
should be small. Further, the real-domain error Er Eq. (2.14) integrates
the intensity outside the object’s support S, and a high Er normally
indicates an incorrect support.

Another issue of the iterative phase retrieval algorithms is that the
residuals of the reconstruction fluctuate, and hence the reconstruction
which fits the constraints the best may not be the desired one. To
find the most representative reconstruction, we run phase retrieval
algorithms from different sets of starting phases, and then average
among those successful reconstructions (i.e., with low E f and Er). We
also measure the reliability of the average reconstruction by the phase
retrieval function (PRTF) [14]:

PRTFi =N−1
N∑

n=1

h̃( j)
i

|h̃( j)
i |
, (2.15)

where N is number of successful reconstructions, i is again the index
of detector pixels, and |h̃( j)

i | is the same for all reconstructions since

they are the pixel intensities of the diffraction pattern, i.e. |h̃( j)
i | =

√
Ii. If

phases from all reconstructions match well, PRTF = 1, and if phases are
entirely random, PRTF =N−1/2. We also use e−1 or 0.5 cut-off [14] in the
radial average of PRTF to determine resolution of the retrieved object.

Fourier shell correlation (FSC) [89] is a compensation method to
PRTF, which guards against over-fitting to noise. Given a sufficiently
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over-sampled diffraction pattern I, we randomly split it into two sets
of equal size and then downsample them. The downsampled sets (I(A)

and I(B) ) are different due to the noises in the diffraction pattern I. FSC
measures the normalized cross-correlation coefficient over correspond-
ing shells rk between recovered Fourier-domain images h̃(A) and h̃(B). In
other words, FSC is a function of the spatial frequency r,

FSC(rk) =

∑
i∈rk

h̃(A)
i h̃(B)∗

i√∑
i∈rk

|h̃(A)
i |2|∑i∈rk

|h̃(B)
i |2
, (2.16)

where h̃(B)∗
i denotes complex conjugation of h̃(B)

i , and FSC≥ 0.5 indicates
overfitting to noise [89].

2.3.3 Additional Constraints
Until now, we have only used the size of the object as an external input
for the phase retrieval methods. Two other common extra constraints
are the reality constraint and the positivity constraint.

In the real space, we often assume that the real part of the scattering
factor is much larger than the imaginary part. By applying the reality
constraint in Eq. (2.17), we force the phase of the object to be either 0 or
π,

Im(hx) = 0. (2.17)

Typically FXI samples are small enough to keep absorbance and the
maximum phase shift sufficiently small, hence the negative scattering
factors do not exist and we can restrict the phase of the object between
[0,π/2] by applying the positivity constraint:

Im(hx) ≥ 0, Re(hx) ≥ 0. (2.18)

Both constraints require an accurate center of the diffraction pat-
tern, since reality constraint implies Friedel symmetry and the positivity
constraint conflicts with large phase ramps in the object domain.

2.4 From 2D diffraction patterns to 3D Volumes
The underlying idea of FXI is “diffract and destroy”, which means that
all particles will be ruined shortly after being hit by an XFEL pulse,
and hence FXI cannot image one particle multiple times1. Luckily,

1Although it is possible to illuminate a sample from multiple directions at once, the
diffraction data is still not enough.
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many bioparticles have identical copies, i.e. they are structurally repro-
ducible. We can treat diffraction patterns from those particles as if they
came from the same particle, and therefore we can assemble those 2D
diffraction patterns into 3D intensities assuming the particle rotations
can be recovered.

In this section, we briefly summarize the different algorithms to re-
cover relative rotations of 2D diffraction patterns. The 3D alignment
can be done in Fourier space before phase retrieval (see §2.4.1), and
the current state-of-the-art algorithm is the Exception-Maximization-
Compression (EMC) algorithm. An alternative way is to combine it-
erative phase retrieval algorithms with orientation determination and
directly obtain the 3D intensity in real space, see §2.4.2.

2.4.1 Aligning in Fourier space
Maximum Likelihood Imaging

Given a probability models P of the expected diffraction intensities,
we can improve the 3D Fourier intensity of an object from a sufficiently
large number of diffraction patterns using a Maximum-Likelihood (ML)
estimator. With i.i.d. frames K = (Kk)Mdata

k=1 , the Maximum Likelihood
estimator is given by

Ŵ = argW max M−1
data

Mdata∑
k=1

logP(Kk|W). (2.19)

This optimization is incomplete for FXI experiments for two reasons:
firstly, the true rotation Rk of the diffraction pattern Kk is unknown and
consequently the frame cannot be directly associated with a definite
Ewald sphere W; secondly, the photon fluence φk, the X-ray intensity at
the time and location when hitting the sample particle, is also unknown.
Hence, we need to redefine the optimization problem in Eq. (2.19) with
a marginal probability,

Ŵ = argmax
W

M−1
data

Mdata∑
k=1

Mrot∑
j=1

logP(Kk|W,R,φ). (2.20)

The Expectation Maximization (EM) algorithm finds the ML esti-
mator of the marginal likelihood Eq. (2.20) by iteratively applying the
Expectation step (E step) and the Maximization step (M step).

In the E step, we calculate the expectation of the log likelihood func-
tion with respect to the conditional distribution of the rotation R, given
the diffraction pattern K and the current estimation of W(n) and φ(n) at
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iteration n,

Q(W,φ|W(n),φ(n))(n+1) = ER|K,W(n),φ(n) logP(Kk|W(n),φ(n),R), (2.21)

and the rotational probability is explicitly available by taking the expo-
nential of Q(n+1).

The M step freezes the Q at the (n+ 1)th iteration, so that φ and W
may be obtained as a solution of the following optimization problem:

[φ(n+1),W(n+1)] = argmax
φ,W

Q(φ,W|φ(n),W(n)) (2.22)

Further, we denote by (Rj)
Mrot
j=1 the sample rotations of the rota-

tional space. Since sampled rotations are generally non-uniformly dis-
tributed, we denote by wj the prior weight for the jth rotation, and
normalize all sample rotations such that

∑
j wj = 1. In other words, se-

lecting Rj with probability wj implies a practically uniform sampling of
the rotational space. A suggestion for sampling rotational space uses
the quaternions encoded rotations and a suitable geometric object for
this purpose is the 600-cell (or hexacosichoron) [53, Appendix C]. With
this suggestion, we can calculate the number of sampled rotations by:

Mrot(d) = 10 · (5d3+d) (2.23)
= [6300,10860,25680,50100,86520] for d = [5,6,8,10,12, · · · ],

with d a free integer parameter, and we typically use d = 10 or d = 12.
Since detectors are pixelized, we can write the kth diffraction pattern

as (Kij)
Mpix

i=1 , where Mpix is the number of pixels on the detector. With a
set of points qi defined on an Ewald sphere, we write the 2D sampled
Fourier intensity at position Rjqi as Wij. Moreover, we denote by φ jk
the estimated photon fluence of the diffraction pattern Kk, given that the
object was rotated according to Rj. With these, we may rewrite the log
likelihood function as follows:

Qijk = logP(Kik|Wij,Rj,φ jk), (2.24)

The joint log likelihood function is therefore

Qjk =
∑

i

Qijk =
∑

i

logP(Kik|Wij,Rj,φ jk), (2.25)

and this is also the solution of the E-step in equation Eq. (2.21). The
normalized rotational probability is now obvious,

Pn+1
jk =Pn+1

jk (Wn,φn) =: P(Rj|Kk,φ
n,Wn)

=
wj exp(Qjk(Wn))∑Mrot

j′=1 wj′ exp(Qj′k(Wn))
. (2.26)
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We now briefly introduce some different probability models. Since
the photon counting process is Poisson [32, 53], it is natural to assume
that the ith pixel of the kth measured diffraction pattern Kik is Poissonian
around the unknown Fourier intensity Wij, i.e.,

P(Kik = κ|Wij,Rj) =
Mrot∏
j=1

(Wij)κ exp(−Wij)

κ!
. (2.27)

In this Poisson modele, we need to normalize the diffraction patterns
before applying this model, Since the photon fluence φ is not identical
for every diffraction pattern in practice.

In stead of normalizing images, some attempts [52, 26] have been
made to better estimate the photon fluence φ by approximating the
Poisson distribution by a Gaussian distribution for high-intensity FXI
diffraction patterns, i.e.,

P(Kik = κ|Wij,Rj,φ jk) ≈
Mrot∏
j=1

exp

⎛⎜⎜⎜⎜⎝ (κ/φ jk−Wij)2

2δ2

⎞⎟⎟⎟⎟⎠ , (2.28)

with δ a free noise parameter, and is difficult to define in practice.
We proposed the scaled Poissonian model in Paper III. More pre-

cisely, we assume that Kik is Poissonian around the scaled unknown
Fourier intensity φ jkWij, i.e.,

P(Kik = κ|Wij,Rj) =
Mrot∏
j=1

(φ jkWij)κ exp(−φ jkWij)

κ!
. (2.29)

Since the photon fluencesφ, the values of the slices W and the diffrac-
tion pattens K cannot be negative, we may borrow ideas from Non-
negative matrix factorization (NNMF) to solve the scaled-Poissonian
ML problem, see more details in Paper III.

The EMC algorithm

We have now discussed EM with FXI diffraction patterns K and a set
of unknown Fourier intensities W. Since both K and W are 2D images
and the wanted Fourier intensity is in 3D, we need to apply extra steps
to interpolate data between the 2D and the 3D space. More specif-
ically, we first, in the expansion step(e step), expand the 3D volume
W into slices W, and then update W by EM, finally assemble them
back into 3D volume, in the Compression step (c step), for every it-
eration, until the algorithm converges. This algorithm is called the
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Figure 2.6. A graphical illustration of the EMC algorithm. In this figure, the
symbol W is the 3D Fourier intensityW. W(∗) is a converged model from the
EMC algorithm. The algorithm contains four steps at each iteration. i) The
expansion step (e step) interpolate a 3D volume into 2D slices, according to
Eq. (2.31). ii) The Expectation step (E step) seeks for the rotational probability
P via Eq. (2.26). iii) The Maximization step (M step) updates the photon fluence
φ and slices W by solving the optimization problem stated in Eq. (2.22). iv)
The Compression step (C step) assembles updated slices Wij back into a 3D
volumeW, according to Eq. (2.31).
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expansion-Expectation-Maximization-Compression (EMC) algorithm,
see the illustration of the algorithm in Figure 2.6.

The e step interpolates a 3D Fourier intensity into 2D slices and
the c step reverses the procedure. Let W = {Wl}Mgrid

l=1 be a 3D discrete
model, an estimation of the 3D Fourier intensity of a biomolecule,
where Mgrid =M3/2

pix . We define interpolation weights f and interpolation

abscissas (pl)
Mgrid

l=1 for some smooth function g,

g(q) ≈
Mgrid∑
l=1

f (pl− q)g(pl). (2.30)

An e step slices Wj from the 3D modelW

Wij =

Mgrid∑
l=1

f (pl−Rjqi)Wl. (2.31)

The C step inverses the interpolation of the e step by averaging the
2D slices Wij back into the 3D gridW,

Wl =

∑Mpix

i=1

∑Mrot
j=1 f (pl−Rjqi)Wij∑Mpix

i=1

∑Mrot
j=1 f (pl−Rjqi)

. (2.32)

Further, we may use the stopping criterion for the EMC algorithm as
follows:

Mgrid∑
l

|W(n)
l=1−W(n−1)

l | ≤ ε, (2.33)

where ε is a small positive number, and in practice we use ε = 0.001.
To achieve high resolution and balance the low signal-to-noise ratio,

we need a fine grid (a large number of rotations) and a massive num-
ber of diffraction patters. This makes the EMC algorithm a compute-
intensive and memory-intensive algorithm. Implementation details for
distributing/ parallelizing the EMC algorithm are discussed in §5 (or
Paper II), and modelling details for the EMC algorithm in §6 (and Paper
III).

Common arc

Instead of iteratively improving the quality of the 3D Fourier intensity,
the common arcs algorithms [11] tries to determine the relative rotations
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from cross-section images of the same object directly. Assume that two
diffraction patterns come from identical copies of a sample particle,
that each diffraction pattern is a sampled Ewald sphere from the same
3D Fourier intensity, and the two Ewald spheres intersect through the
center via a shared a curve, see Figure 2.7. In other words, the relative
rotation of the two diffraction patterns can be found by finding the
shared curve. The method is straightforward and easy to parallel, but
it can be quite sensitive the pattern noise due to that we only use pixels
on the common arcs to determine the relative rotations.

Figure 2.7. A demonstration of the common arc algorithm with the two diffrac-
tion patterns from the same objects interacting through a common arc. In
brief, the common arc algorithm, firstly, finds out the relative orientations of
all pattern pairs by choosing the maximum correlations of the intensities along
the shared curves. It then fits all relative orientations together to to choose the
“absolute” rotation of each pattern.

Manifold embedding

Finding the relative rotations of diffraction patterns can also be con-
sidered as a manifold embedding problem in a very high dimensional
vector space, as rotations are 3D (or 4D) manifolds and diffraction pat-
terns can be described in a vector space. To find the map between the
observed data (diffraction patterns) and the manifolds (rotations), we
can use mapping algorithms such as diffusion maps (DM) [16, 34, 80],
Self Organizing Map [47], Generative Topographic Mapping (GTM) [7].
It is hard to draw a general conclusion about this group of methods,
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but they are more robust than the common arc since it makes use of all
pixels.

Further, working in high-dimension vector space can be hard and
time-consuming, and hence in practise, people seek for dimensional
reduction methods for the mapping algorithms. Assuming a Gaussian
statistics, [7] used the GTM method with a vector space computed by
Factor Analysis (FA). To adjust the parameters of the mapping func-
tion, Expectation–Maximization (EM) algorithm was used. With the
Wigner D-functions and the eigenfunctions computed via diffusion
maps method, [41] also limited the degrees of freedom according to
the point groups (symmetries) as well as reduced the dimension of im-
age space. In 2017, [42] illustrated this method on a real FXI dataset,
and recovered the structure of the PR772 virus.

Other methods

Similar to the EMC algorithm, the correlation maximization method
[87] begins with a random 3D intensity and a new intensity is con-
structed in each step from all diffraction patterns rotated to their best-
fitting orientation. Instead of working on a Cartesian grid, the correla-
tion maximization method first transfers all 2D patterns into a 3D polar
grid. It then samples the 3D intensity into polar sections in different
orientations and computes the correlations among the polar sections
and diffraction patterns. To form a new 3D intensity, all patterns are
orientated to their best-fit orientations, which are determined by the
maximal value of the correlations.

The angular correlation [77] method also works on a polar grid,
it adapts Icosahedral Harmonics and calculates the average angular
correlations among the different frequency bins of diffraction patterns.
The rotational information of diffraction patterns can therefore be found
in the spherical harmonic expansion coefficients.

2.4.2 Real space reconstruction
Other than aligning 2D diffraction patterns to 3D volumes in Fourier
space and then phasing the 3D Fourier intensity, one could phase 2D
diffraction patterns while aligning them into a 3D real-space volume.
The most successful algorithm in this category is the multi-tiered itera-
tive phasing (M-TIP) [22]. Briefly, the M-TIP method [22] is an extension
of standard iterative phasing algorithms, and can recover the 3D inter-
nal intensity directly from fluctuation X-ray scattering data. Instead of
working on a Cartesian grid , the M-TIP considers 2D and 3D Fourier
transformations on a polar grid, and defines several projection opera-
tors to enforce constraints and assumptions in a fluctuation scattering
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experiment. By combining the angular correlation to the iterative phas-
ing algorithm, such as ER, RAAR, HIO with projection operators, the
method merges 2D diffraction patterns into 3D intensities in real space.

[48] demonstrated the M-TIP method with reconstructions to 3D
intensity of rice dwarf virus (RDV) and PR772 viruses. Similar to
the results in [42, 76], the obtained intensities deviated from an ideal
icosahedron and have non-uniform distribution of internal structures.
However, the resolutions were slightly worse than the detector-edge
resolution. Another use of M-TIP method is the 3D structure of the
Paramecium bursaria Chlorella virus [72], which also had icosahedral
capsid with asymmetrical interior.

To summarize, the rapid developments of the modern XFELs provide
possibilities to study the structures of non-periodic bio-samples. Relied
on XFELs, the FXI experiments will capture 2D diffraction patterns
of single particles before X-ray pulses ruin the samples into plasma,
ideally. However, in practise, we may also get a large amount of empty
frames, patterns from multiple particles and contaminants from the
detector, etc. Further, the phase information of the scattering wave, the
particle orientations, and the beam intensity information at the time
and location when hitting the particles are unobservable for FXI. Later
in §III, we will summarize methods to handling challenges mentioned
above. Briefly, the methods for selecting high-quality homogeneous
single-particle diffraction patterns is in Paper I (§4). The method to
speed up computations of rotation determination is in Paper II (§5).
The scaled Possionian model the speedup of rotation determination
(Eq. (2.29)) and uncertainties measurement of the reconstruction object
are in Paper III (§6). We also demonstrate the above methods together
with phase retrieval method, and pattern healing methods, etc. in in
Paper IV (§7) to recover the 3D structure of sample particle from a real
FXI experiment.
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3. Accelerated Computing

With the rapidly increasing volumes of data and computations, data
scientists are in high need of computing resources to produce high-
quality results in time. The need for scalable storage and computational
resources is fulfilled at a supercomputing facility, or by using a cluster,
or even by the cloud. The computational servers handle computational
workloads by a variety of processing elements, and here we list some:

1. CPUs are short for Central Processing Units, which carry out the
instructions of a computer program. Modern computers often
employ multicore processors, which contain two or more CPUs.
All modern general-purpose CPUs can support both instruction-
level parallelism and thread Level parallelism.

2. Coprocessors are many-core processors that are used in tandem
with CPUs. Some coprocessors, such as Floating-point units, rely
on direct control via coprocessor instructions, embedded in the
CPU’s instruction stream. Others are independent of the CPUs
and work asynchronously via a limited instruction set focussed
on accelerating specific tasks. Although CPUs absorb the func-
tionality of most popular coprocessors over time, the specialized
coprocessors are developed to boost computational power and
allow for the continued evolution of processor units.

3. Accelerators are also many-core processors, and the most used
accelerator is the Graphics Processing Unit (GPU), which may
consist of thousands of cores. For example, NVIDIA GTX680
GPU consists of 1536 cores. A GPU is a specialized electronic
circuit designed to manipulate and alter memory blocks rapidly,
and hence it can efficiently handle highly parallel structures, such
as images and computer graphics.

In this section, I will summarize some popular computational paradigms
in §3.1, and parallel and distributed computing schemes commonly
used in High-Performance Computing in §3.2.

3.1 Popular Computational Paradigms
The rapid developments of modern society, including industries, re-
search, social media, and personal life, etc, rely much on data-driven
technologies. Indeed, the amounts of computations and data storage
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are enormous and are still increasing rapidly. Researches and engineers
move their works from stationary computers to modern supercomput-
ers, clusters, and clouds to deal with big data and heavy computations.
Many platforms are available on the market, such as Hadoop [92],
Spark [96], Amazon Web Services (AWS), Google Cloud, IBM Cloud,
and Microsoft’s Azure [23], etc. Those platforms are one-stop, high-
level, and easy-access solutions, which may integrate hardware and
software for files/data management, data analytics, etc. If one would
like to have full control of parallel/distribution computing paradigms
in a private computer cluster, the High-Throughput Computing (HTC)
and High-performance Computing (HPC) are the key terminologies.

HTC

HTC [51] concerns the computation power over a longer period, in
other words, how many floating-point operations can be obtained from
the computing environment per month or per year. The HTC tasks
are loosely-coupled [83], i.e. the communications among tasks are very
limited. Therefore, HTC jobs can be executed on physically distributed
resources using grid-enabled technologies.

HPC

HPC concerns floating point operations per second (FLOPS). HPC pro-
grams use aggregated high-end computing resources along with par-
allel or distributed processing techniques to solve both compute- and
data-intensive problems. HPC computing typically requires commu-
nications and synchronizations among HPC servers that are connected
by a fast and efficient network. In an HPC platform, a computational
task is broken down to many similar subtasks that can be processed
independently and simultaneously on different processors, so that the
overall execution time is reduced. For efficiently using the underly-
ing processing units and accelerating applications, both parallel and
distributed computing schemes can be used.

Since this work involved the HPC platform in various ways, we
hereby briefly introduce parallel, distributed, and mixed HPC comput-
ing schemes.

3.2 Parallel Computing in HPC
Parallel computing and distributed computing have a lot in common,
and it is hard to draw a clear and extinct border between them. In this
chapter, we roughly distinct parallel computing and distributed com-
puting via the usage of memory. In parallel computing, all processors
or threads have access to shared memory to exchange information. On
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the other hand, processors/threads of a distributed computing system
will have their private memory, and can only exchange information via
passing messages.

A typical parallel computing application uses a language or a li-
brary that supports spawning of multiple threads. All threads run
concurrently with the runtime environment allocating threads to dif-
ferent processors, and they can access both the private memory and
the shared memory space. Figure 3.1 illustrates an example of memory
usage for parallel computing.

Figure 3.1. An example of memory usage for parallel computing.

POSIX Threads (PThreads) [67] and (Open Multi-Processing) OpenMP
[17] are two major CPU implementations of the multithreaded shared-
memory parallel paradigm.

PThreads

For a UNIX-like system, PThreads has been specified by the IEEE POSIX
1003.1c Standard. Although the Standard exists independently from a
language, PThreads is quite often referred to as Pthreads in C/C++
programming languages. The implemented Pthreads library contains
more than 100 PThreads procedures, such as thread management, mu-
texes, locks, critical section, condition variables, etc. PThread allows
one to spawn a new concurrent process flow and allows scheduling of
a process flow on a different processor. A typical PThreads program
starts with creating threads with specified tasks to each thread and ends
up with threads joining.

OpenMP

OpenMP is an explicit programming model, and it offers the program-
mer full control over parallelization. Similar to PThreads, it also uses
the fork-join parallel execution model, which means a master thread
creates a specified number of slave threads and the system divides the
tasks among them. OpenMP has straightforward syntax compared
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with Pthreads, for example in C/C++, we parallelize a piece of serial
code by adding a command starting with“# pragma omp parallel”.
OpenMP has full support from many compilers such as GCC, Intel
Fortran, and C/C++ compilers.

3.2.1 Parallization on GPUs
Modern GPUs are now widely used in HPC applications since they
are very efficient at manipulating highly parallel structures. Usually, a
GPU-accelerated application is running on the GPU by offloading some
of the compute-intensive portions of the code, such as dense linear al-
gebra and Fast Fourier transforms (FFTs). The rest of the application
still runs on the CPU, such as I/O operations. From a user’s perspective,
the application runs faster because it’s using the massively parallel pro-
cessing power of the GPU to boost performance. Currently, OpenCL
and CUDA are the two important and dominating frameworks for writ-
ing programs that execute across heterogeneous platforms consisting
of CPUs and GPUs.

OpenCL

OpenCL [65] is an open standard framework that views a computing
system as a collection of computing devices. Nowadays, it provides
support for CPUs, GPUs, and even digital signal processors ( DSPs),
field-programmable gate arrays (FPGAs) and other processors or hard-
ware accelerators. The OpenCL API is defined in C with a C++Wrap-
per, and other languages such as Java or Python also provide third-party
bindings. Further, OpenCL is intended to use run-time compilations,
which allows OpenCL applications to be portable between implemen-
tations for various host devices.

CUDA

CUDA was introduced by NVIDIA, the largest GPU manufactory, in
2006 and it leverages the parallel compute engine in NVIDIA GPUs
to solve complex computational problems. CUDA comes with a soft-
ware environment that allows developers to use C/C++ as a high-level
programming language. Cuda also supports other languages, applica-
tion programming interfaces, or directives-based approaches, such as
FORTRAN, DirectCompute, OpenACC.

CUDA also uses the shared-memory paradigm. It can arrange its
threads in 1D, 2D, and 3D in threads blocks, and group threads blocks
into 1D, 2D, and 3D grids. Every CUDA thread can execute CUDA
functions (kernels) in parallel with access to three levels of memory: the
per-thread local memory, the per-block shared memory, and the global
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memory. As illustrated in 3.2, the CUDA programming model assumes
that all CUDA threads execute on a physically separated device (GPU),
that operates as a coprocessor to the host (CPU) running the C program.
In the illustration, the serial code runs as an ordinary C function on
CPU, and the parallel kernel (Kernel0) runs on a GPU grid with 2 by
3 thread blocks, and the next serial code runs again on the CPU. This
process continues, hence we can execute multiple parallel kernels and
several blocks of CPU code in one program. In this heterogeneous
system architecture, the memory management unit of the CPU and
the input/output memory management unit of the GPU have to share
certain characteristics, like a common address space.

Similar to CPU memories, CUDA allows access to GPU memories
at different levels, illustrated in Figure 3.3. Each thread has its reg-
isters and a local memory. All threads within a block can access the
share memory. The global memory, the texture memory, and the con-
stant memory are accessed by all threads and can exchange data with
the host. In this memory hierarchy, registers are the fastest, followed
by share memories and local memories. Threads in different blocks
communicate each other via global memory.

Further, CUDA provides many useful libraries. CUDA BLAS Library
(cuBLAS) implements the standard BLAS specification that is 6x to
17x faster than the latest MKL BLAS [68]. CUDA Sparse (cuSPARSE)
[69] provides a collection of basic linear algebra subroutines used for
sparse matrices which are 8x faster than Boost. CUDA Fast Fourier
Transform Library (cuFFT) is a library that provides a simple interface
for computing FFTs. Other libraries can be used for neural network
applications (such as cuDNN and TensorRT), image processing (such as
NPP and FFmpeg), EM Photonics (CULA Tools), and sequence analysis
(NVBIO), etc.

3.3 Distributed Computing in HPC
Unlike the parallel computing, a processor used in distributed com-
puting can only access its private memory, and exchange information
with other processors by message passing via communication links.
Figure 3.4 illustrates memory usage in a distributed computing system.

Historically, the Parallel Virtual Machine (PVM) and Message Pass-
ing Interface (MPI) are two typical approaches for communicating be-
tween cluster nodes. PVM is a particular set of libraries, while MPI is
a specification with several concrete implementations. MPI provides
essential virtual topology, synchronization, and communication func-
tionality between a set of processes in a language-independent way,
with language-specific syntax (bindings), and a few language-specific
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Figure 3.2. An example of CUDA programming model. The serial code exe-
cutes by a host thread running on CPU and parallel kernel runs on a GPU.

features. MPI programs always work with multiple processes and typ-
ically a process is assigned to one CPU (or one core in a multi-core
machine) at runtime. The essential functions of the MPI library are
point-to-point operations, collective operations, process topology, syn-
chronization. Some implementation of MPI also provides features for
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Figure 3.3. An example of GPU memory hierarchy.

Figure 3.4. An example of memory usage for distributed computing.

parallel I/O, one-sided communication, dynamic process management,
etc.
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3.4 Mixed Parallel and Distributed Computing
A computing cluster allows using the merits of both parallel comput-
ing and distributed computing. In this mixed computing model, in-
formation exchange among nodes is accomplished by programming
interfaces such as MPI, and via shared memory within a node. In this
way, compute-intensive applications use the computation powers of
cores from different nodes, and memory-intensive applications use the
memory volumes of different nodes.

For HPC applications, a typical communication model in mixed com-
puting model is the master/slave (sometimes also referred to as prima-
ry/replica) model, in which the master processor has unidirectional
control over one or more other processors. For example, application
developers can use OpenMP or Pthreads on a local server and exchange
information via MPI among servers on a CPU cluster. The master/slave
approach is also attractive for HPC applications on a heterogeneous
platform. For example, in heterogeneous platforms equipped with
both CPUs and GPUs, we can use a star-like communication topology,
illustrated in Figure 3.5 and Figure 3.6.

Figure 3.5. The star communication topology of a small heterogeneous platform
equipped with both CPUs and GPUs.

In these two examples, all CPUs have private memories and are in
charge of launching GPU kernels. CPUs and GPUs might be located
physically on different servers. For a smaller topology as showed in
Figure 3.5, one specified CPU works as master and takes control of all
communications. For a larger topology showing in Figure 3.6, several
CPUs work as master and manage information exchange within a node
group, and one specified CPU works as the master of masters which is
in charge of communications among node groups.

From 2013, Nvidia GPUs can exchange information via PCI express
devices without interfering with any CPUs, and this technology is called
NVIDIA GPUDirect™[70]. Using GPUDirect, multiple GPUs, third

46



Figure 3.6. The extend star-like communication topology of a big heteroge-
neous platform. This example contains 4 node groups, and each group is
equipped with 4 CPUs and 4 GPUs.

party network adapters, solid-state drives (SSDs) and other devices
can directly read and write to CUDA memories, and hence application
performances can be improved.

To sum up, the dramatical growth of the FXI data volumes make
manual data analysis impossible, and hence we need to parallel and
distribute our dataset and computations. Among all computation
paradigms, we find our applications fit well into HPC content, in which
we can utilize the advantages of the parallel and the distributed com-
puting at the same time. The merits of start-like topology (in Figure
3.6) allows us, in Paper II (§5), to distribute dataset into a cluster with
many computational nodes and parallelize computations using GPUs
with minimal communications among different nodes.
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Part III:
Contributions



In this thesis, we have tried to solve the challenges mentioned in §1.
Figure 3.7 illustrates the pipeline of analyzing FXI data — from the
raw diffraction patterns to the 3D electron structures. Our proposed
analysis pipeline first selects high-quality single-particle diffraction pat-
terns (§4) in the pre-processing stage and pushes limited but enough
patterns into next stage. The reconstruction stage aligns the selected
2D patterns into a 3D Fourier intensity via our accelerated EMC im-
plementations, which are summarized §5. The last stage, the post-
analysis stage, quantitatively measures the reconstruction uncertain-
ties (explained in §6), and transfers Fourier domain information into
real domain knowledge. In §7, we illustrate this pipeline with an FXI
dateset of PR772 viruses [75, 93], which was downloaded from [57].

Figure 3.7. The pipeline to analyze the FXI data — from the raw diffraction
patterns to the 3D electron structures. In the pre-processing stage, we select
high-quality homogeneous single-particle diffraction patterns for the EMC
algorithm. In the reconstruction stage, we use our accelerated EMC imple-
mentations to reconstruct 3D Fourier intensities. In the post-analysis unit, we
do uncertainty analysis together with phasing, etc.
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4. Paper I: Classification 1

The classification procedure prepares input data for the 3D reconstruc-
tion step, i.e. the EMC algorithm. Two supervised template-based ma-
chine learning algorithms are proposed in the paper — the Eigen Image
method (EI) and the Log-Likelihood method (LL). The EI method as-
sesses the similarity between the template diffraction patterns and the
incoming testing patterns by analyzing eigenvector projections, and the
LL method works on the log-likelihood function. Both methods are in-
dependent of access to the full dataset, and consequently they are easy
to parallelize for achieving XFEL repetition rate. With our methods, we
thus aim to select high-quality homogeneous single-particle diffraction
patterns in a fast and robust way. Such datasets may hopefully help 3D
assembling algorithms [53, 50] to converge more quickly and improve
on the final 3D resolution.

In Paper I, we tested our methods systematically, by gradually in-
creasing the data complexity of the testing dataset, i.e. from noiseless
homogeneous patterns to noisy heterogeneous patterns in both particle
shapes and sizes. Moreover, we have also evaluated our methods for
the mimivirus FXI data [26, 24], which downloaded from [57].

In practice, the EI classifier gave a slightly smaller pattern distances
and fluence distances, and the lowest error were obtained around the
template size (180 nm) for a synthetic icosahedral testing dataset of
particle sizes between 150 nm and 210 nm, see Figure 4.1. Further, it
also gave a better estimation of particle sizes — on average we obtained
a minimum absolute error of 1 nm around 180 nm from both methods,
and a maximum error of 4 nm.

Moreover, the EI classifier is a preferable classification method for
real FXI experiments. A test classification on 578 FXI mimivirus hits
from 50,712 raw diffraction patterns was performed, see Table 4.1. We
measure the classifiers performances following [29, 74] closely.

This classification procedure can help EMC reducing the input data.
Considering the fact that EMC can fit a “good” pattern in only one or
a few rotations (due to potential particle symmetry), and smear out a
“bad” pattern into many rotations, we can therefore quantify the quality

1J. Liu, G. van der Schot, and S. Engblom. (2019). Supervised classification methods
for flash X-ray single particle diffraction imaging. Optics express, 27(4), 3884-3899.
https://doi.org/10.1364/OE.27.003884 [49]
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Figure 4.1. Classification of the synthetic dataset. (a): The pattern distances
and the fluence distances of the testing dataset from the EI classifier. (b): The
corresponding distances from the LL classifier. The testing dataset contained
2000 synthetic icosahedral diffraction patterns of different sizes. The smallest
distances were obtained around the template size (180 nm) for both classifiers.
(c): The absolute errors of the recovered sizes from the EI (blue triangle) and
the LL (red star) classifier. The smallest error was obtained at around 180 nm
particle size, and the largest error was occurred around the upper boundary
of the sizes in our testing dataset. This figure is adopted from Paper I.

Table 4.1. Classification results from the EI and the LL classifier of the raw mimivirus
dataset [26]. In the table, ACC, F1 ,PPV, and TPR are abbreviations of Accuracy, F1
score, Positive Predictive Value and True Positive Rate, respectively.

EI LL
Single Other Single Other

Accepted 75 33 71 38
Rejected 14 456 18 451

ACC=0.92 TPR=0.84 ACC=0.90 TPR=0.80
PPV =0.69 F1=0.76 PPV=0.65 F1=0.72

of selected patterns by looking at the correlation between the pattern
distance and the sum of the largest N (N = 30 was used ) rotational
probabilities of each diffraction pattern, see Figure 4.2.
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Figure 4.2. (a): The pattern distances from the EI and the LL Classifier of the
mimivirus dataset used in the 3D reconstruction [26]. With a pattern-distance
threshold of 0.5, both classifier accepted 180 (or 90.9%) patterns [(b) and (c)]:
The sum of the largest 0.035% (the largest 30) rotational probabilities of each
diffraction pattern ( the rotational probabilities at the final iteration of EMC
with Gaussian noise model) vs the pattern distances for the EI and LL classifier,
respectively. [(d)–(h)]: Combination images at the data points (red circles) in (a).
We plotted the raw data in the left part of each image and the corresponding
template scaled by the recovered fluence in the right part of each image For the
rejected diffraction patterns, (g) was slightly elongated and (h) was a smaller
virus comparing to than the template.
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5. Paper II: Accelerated EMC on GPU
clusters 1

Reconstructing a 3D Fourier intensity from the selected 2D diffraction
patterns is a computational and memory intensive task. The single-
GPU EMC implementation, which was used in [26], took more than 15
hours for an EMC run with only 198 patterns, and it required massive
runs to determine the 3D Fourier intensity as a free parameter was
used in the Gaussian model. To speed up the rotation determination
procedure, we accelerated the EMC algorithm using GPU clusters in
the following ways:
• Distributed EMC: The distributed EMC divides the computations

into multiple GPUs by splitting the sampled rotations evenly. For
one EMC iteration, each GPU computes a portion of rotation prob-
abilities and the local 3D model from all diffraction patterns. Each
processor then updates its local copy of the 3D model by averaging
the 3D models from all processors. We attempted to minimize the
communications among GPUs in this scheme, and implemented
it with the star communication topology (see Figure 3.5).
• Fully Distributed EMC: For a very large diffraction dataset, the

Distributed EMC can be slow and problematic. Therefore, our
fully distributed EMC distributes the diffraction patterns together
with the sampled rotations, and its implementation uses an ex-
tended star communication topology, as showed in Figure 3.6.

We have tested our distributed and fully distributed implementa-
tions on a 32-nodes homogeneous GPU cluster, where each node con-
tains 24 Intel Xeon E5-2620 CPUs and 4 Nvidia GeForce GTX 680 GPUs.
For testing our accelerated EMC implementations, we used the Gaus-
sian noise model Eq. (2.28), which previously successfully determined
a 3D electron model for the Mimivirus [26].

The distributed EMC implementation got a nearly perfect efficiency,
as showed in Figure 5.1. This implementation is favourable for a small
number of GPUs and a small number of diffraction patterns.

1T. Ekeberg, S. Engblom, and J. Liu. (2015). Machine learning
for ultrafast X-ray diffraction patterns on large-scale GPU clusters. The
international journal of high performance computing applications, 29(2), 233-243.
http://doi.org/10.1177/1094342015572030 [25]
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Figure 5.1. Efficiencies of the distributed EMC implementation. Circles: the
198 mimivirus diffraction patterns used in [26], triangles: 1000 synthetic pat-
terns, solid: for 1283−voxels intensity models, dashed: for 643−voxels in-
tensity models. Upper dotted line: B = 0.001 for the Amdahl’s efficiency
E = T(1)/nT(n) = 1/nB+ (1−B), where n is the number of GPUs. Lower dot-
ted line: B = 0.01.

We have also profiled our fully distributed EMC with 10,000 syn-
thetic diffraction patterns. As showed in Table 5.1, we tested the imple-
mentation with up to 100 GPUs, and it achieved a higher floating point
performance when compared to the single GPU implementation (32.9
GFLOPS and 39.4 GFLOPS, respectively, for the 643− and the 1283−
model).

643 1283

# GPUs Time (s) GFLOPS/GPU Time (s) GFLOPS/GPU
16 164.6 36.3 552.2 43.3
32 83.5 35.8 281.2 42.5
64 42.3 35.3 141.6 42.3
96 28.3 35.2 95.4 41.8

100 27.2 35.2 91.6 41.8
Table 5.1. Average execution time and floating point performance per GPU and per
iteration using the fully distributed EMC for a a testing dataset with 10,000 synthetic
diffraction patterns.

Figure 5.2 displays the scalability of different configurations. We can
interpret the scalability as the execution time per computation unit of
configuration C1 compared to configuration C2. From the graph, we
concluded that as the size of the datasets plays a more prominent role
than the size of the grid, and the fully distributed EMC becomes a
favourable choice.
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Figure 5.2. Bar plot of the scalability S(C1,C2) from configuration C1 and C2.
In this chart, configuration 1 ran the distributed EMC with 198 frames on a
643 grid, and configuration 2 ran EMC on the same dataset on a 1283 grid.
Configuration 3 and 4 ran EMC with 1000 synthetic frames on a 643 grid and
a 1283 grid, respectively.

5.1 Other Technologies
Other than distributing computations, we can also improve the effi-
ciency by reducing the amount of computations. One adaptive way
proposed in Paper II was the Adaptive EMC. By gradually increasing
the sizes of the sampled rotations, instead of using a fine sampling from
the beginning, it can reduce the computation time by half. We may also
expect that the efficiency gain of a factor of about 2 remains also for
larger load cases.
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6. Paper III: Uncertainty Quantification 1

Obtaining high-quality 3D models requires the experimental develop-
ments of the FXI technology along with a comprehensive understand-
ing of the uncertainty propagation in the EMC reconstruction proce-
dure. In Paper III, we have identified the sources of uncertainties
through the reconstructing process, and measured the EMC-algorithm
related errors (algorithmic errors), using a known 3D ‘truth’ of the
Fourier intensity. With a known 3D ‘truth’, we measured the follow-
ing algorithmic errors: the smearing, the noise, the rotational and the
fluence error.

We have also contributed to bootstrap procedures estimating the re-
construction uncertainty when the 3D ‘truth’ is unknown. We used
both the standard bootstrap and the Expectation-Maximization algo-
rithm with bootstrapping (EMB) estimator. In brief, the standard boot-
strap method ran EMC with 100 bootstrap samples, yielding 100 3D
Fourier intensities, and it then calculated uncertainties from those 3D
intensities. On the other hand, EMB also ran EMC with 100 bootstrap
samples, but it calculated the mean and the variance of the rotational
probabilities at the last iteration of each EMC run, and then it assem-
bled the mean and the variance into 3D volumes to estimate the 3D
uncertainty.

The noise model used in Paper III was the scaled Poisson model
Eq. (2.29). Since the photon fluence φ and slices W cannot be nega-
tive, we hence borrow ideas from the non-negative matrix factorization
(NNMF) and solve the scaled Poisson model as follows:

φ(n+1)
jk =

∑
i Kik∑

i W(n)
i j

∑
lW

(n−1)
l∑

lW
(n)
l

, W(n+1)
i j =

∑Mdata
k=1 P(n+1)

jk Kik∑Mdata
k=1 P(n+1)

jk φ(n+1)
jk

, (6.1)

where
∑

lW
(n−1)
l /

∑
lW

(n)
l is a normalization term.

Figure 6.1 shows the total algorithmic error and the estimated uncer-
tainties of the standard bootstrap and the EMB estimator, with respect
to the voxel-to-center distance r. In the figure, R50 is the average error

1J. Liu, S. Engblom, and C. Nettelblad. (2018). Assessing uncertainties in X-ray
single-particle three-dimensional reconstruction. Physical Review E, 98(1), 013303.
http://doi.org/10.1103/PhysRevE.98.013303 [50]
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for a 3D Fourier intensity, for which 50% patterns are inserted in the
correct rotations, and the rest are randomly inserted. Similarly R100
is the average error for a 3D Fourier intensity, for which all patterns
are randomly inserted. As can be seen from Figure 6.1, our estimated
reconstruction uncertainty from bootstrap procedures were accurate
for reconstructing larger volumes. Due to the underestimation of the
smearing error, we underrated the uncertainty for the 643−voxel model.
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Figure 6.1. (a): The total algorithmic error, measured when the 3D ‘truth’ was
known. [(b) and (c)]: The estimated reconstruction uncertainty from standard
bootstrap procedure (b) and the EMB procedure (c). For both estimators,
the 3D ’truth’ was unknown. R50 is the 50% hidden-data error, and we can
understand this as only 50% of diffraction patterns are aligned in the correct
rotation.

We have also studied the influence of background noise, pattern in-
tensity, and data volumes, see Figure 6.2. We concluded that the quality
of reconstruction increases (the reconstruction uncertainty decreases)
with increasing number of diffraction patterns and photons counts.
On the other hand, we can also obtained better reconstructions if we
could remove the background noise. With the scaled Poisson model,
we needed at least 500 noiseless data frames or 750 noisy frames to
pass the R50 threshold for a dataset similar to the Mimivirus [26]. For
the R100 threshold, we need at least 250 diffraction patterns without
background noise, or 500 frames with background noise. We therefore
recommend to use at least 500−1000 fairly high quality frames to obtain
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a minimally accurate reconstruction for a dataset similar to mimivirus
[26]. We also recommend to increase the number of diffraction patterns
to compensate the noisy and low intensity.
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Figure 6.2. (a): The relationship among the average reconstruction uncertainty,
the diffraction pattern intensity, and the number of diffraction patterns using
the standard bootstrap estimator. R50 and R100 are the average 50% and 100%
hidden-data error, and the later one meant all patterns were assembled into a
3D volume randomly.
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7. Paper IV : FXI data analysis pipeline
illustration 1

Paper IV recalled the data analysis idea illustrated in Figure 3.7, and
developed a proposed FXI data analysis pipeline, see Figure 7.1. Our
pipeline aims to provide a fast and robust way to reconstruct 3D
biomolecules from FXI diffraction patterns, and it has the potential
to obtain a 3D structure during the FXI experiment. Further, we put
more efforts in the post analysis step, handling multiple issues in phase
retrieval, together with analysis of uncertainties and shapes.

Figure 7.1. The FXI data-analysis pipeline. a) The hit finding procedure selects
an initial dataset from the raw FXI data. b) From the initial dataset, the classifi-
cation procedure selects high-quality homogeneous single-particle diffraction
patterns with the designed features. We use our EI classifier (presented in
Paper I) for classification. c) The 3D reconstruction procedure assembles 3D
Fourier intensity from the selected diffraction patterns via our efficient im-
plementation of EMC (as in Paper II), with the scaled-Poisson model (see
Paper III). d) In the Post analysis step, we retrieve the 3D real-space structure,
validate the results, analyse uncertainties (see Paper III), etc.

As an illustration of our pipeline, we reconstructed 3D intensities
from PR772 [75] experiment. The initial dataset [75, 93] was down-
loaded from [57], and it contained N14k = 14,772 single-hit patterns.

1(manuscript) J. Liu, S. Engblom, and C. Nettelblad. Flash X-ray Imaging in 3D: A
Proposed data analysis pipeline
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With our EI classifier and the thresholds of particle sizes and fluences,
we have selected two datasets N1k and N3k that contained 1,084 and
3,140 diffraction patterns, respectively. We then pushed both datasets
into the distributed EMC implementation described in Paper II with
the NNMF solution of the scaled Poisson model. The algorithm con-
verged quickly and stopped within 41 EMC iteration, i.e., we have
reconstructed 3D Fourier intensities within 45 minutes using 3 Nvidia
GTX 680 GPUs. Both datasets fitted well into the scaled Poisson model,
we obtained large values of the probability to the most-likely rotation
of each diffraction patterns, see Table 7.1. For a pattern composed
of random numbers, the expectation of the probability to the most-
likely rotation is approximately 1/Mrot ≈ 2× 10−5. The minimal value
we obtained for N3k was 0.177 (� 2×10−5), indicating that the selected
patterns fitted with the scaled Poisson model.

Table 7.1. The statistics of the probability to the most-likely rotation of diffraction
patterns in datasets N1k and N3k.

Max Mean Median Min Peak
N1k 1 0.924 0.989 0.235 0.98
N3k 1 0.846 0.940 0.177 1.0

In the post-analysis step, we retrieved real space intensities using a
combination of algorithms — 10000 iterations of the relaxed averaged
alternating reflections (RAAR) followed by 2000 iterations of Error Re-
duction (ER) algorithm. For robustness, we averaged 100 phased ob-
jects, and calculated the the phase retrieval transfer function (PRTF) to
determine resolutions.

The recovered real-space intensity directly obtained from the N3k
dataset, see Figure 7.2(a), had pseudo-icosahedral capsids with asym-
metric interior structures at the resolution of around 10.7 nm. We also
observed three concentric layers and the central rings had high inten-
sity values. The uneven intensity distribution and layers might be due
to noise and aliasing effects. By subtracting the background noise per
frequency bin from the 3D Fourier intensity, we obtained less concen-
trated interior structure in Figure 7.2(b). To handle the aliasing effects,
we applied 3D Hann window over the Fourier intensities with/without
background noises before phasing them, and the windowed intensities
gave smoother objects in the real-space without layers, see Figure 7.2(c)
and Figure 7.2(d). Further, the background subtraction improved the
resolution from 10.7 nm to 8.7 / 8.4 nm with /without Hann windowing.

In Paper III, we have brought up the bootstrap idea for quantifying
the uncertainties of 3D Fourier intensities, and in Paper IV we further
extend the idea to the Real-space. Briefly, the bootstrap idea estimated
the total uncertainty from the estimation of bias, and standard error,
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(a) (b) (c) (d)

Figure 7.2. Cross-section images of the average recovered real-space intensities.
(a): the average intensity directly phased from EMC reconstruction of N3k. (b):
with the 3D background subtraction from Fourier intensity of (a). [(c) and (d)]:
applied Hann window before phasing for the Fourier intensities of (a) and (b),
respectively. The resolutions of [ (a) – (d)] calculated from PRTF were 10.7 nm,
8.4 nm, 10 nm and 8.7 nm, respectively. And their estimated vertex-to-vertex
distance were 69.4 nm, 68.9 nm, 69.2 nm and 69 nm.

either in the Fourier or in the Real space. Further, with the threshold of
the 50% error R50, we can use the uncertainty measurements to judge
the resolution, obtaining a resolution of around 10 nm for the dataset
N3k.

(a) (b)

0 0.02 0.04 0.06 0.08 0.1 0.12

Spatial Frequency [nm -1 ]

0

0.1

0.2

0.3

0.4

0.5

0.6

U
n

c
e

rt
a

in
ti
e

s

R
50

R
100

11.6nm 8.3nm

Fourier space

Real space

(c)

Figure 7.3. The bootstrap results and the uncertainty analysis of the dataset N3k.
(a): a cross-section image of the real-space intensity that was averaged from
the phased objects of the 100 bootstrap Fourier intensities. (b): the average
phased object from the bootstrap mean of the 100 Fourier intensities. (c): the
uncertainty measurements in the Fourier and the real space. Both analyses
gave a resolution of around 10 nm, with the threshold of R50.
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8. Summary and Outlook

Visualizing small biology objects has been an interesting topic over
many years. The Flash X-ray single-particle diffraction imaging (FXI),
which relies on the theory of “diffract and destroy ”, is a modern
way to illuminate and reconstruct single-particle structures using XFEL
pulses. We foresee that FXI experiments will be able to determine sub-
nanometer structures in the future.

The incredible high repetition rate of XFELs allows capturing an
enormous amount of diffraction images, and hence a robust automatic
or semi-automatic pipeline with uncertainty analysis is necessary. To
be more specific, this Ph.D. thesis tackled the following problems in FXI
data analysis:
• Pattern classification (in Paper I): FXI experiments run in XFELs with

high repetition rates, and therefore the volume of raw images is too
huge to analyze manually. To select high-quality diffraction patterns
with desired features, we have developed two supervised machine
learning methods to classify the raw 2D diffraction data in Paper I.
Both methods are highly parallelizable and can speed up to match
the XFELs repetition rates.
• Efficient 3D reconstruction in Fourier space (in Paper II): The cap-

tured diffraction patterns contain only intensity values, and the in-
formation of particle rotations are unobservable. The computations
to determine the rotations and form a 3D Fourier intensity are enor-
mous. To compensate for the low signal-to-noise signals from smaller
objects, we need more patterns for determining rotations, and in con-
sequence, the computations needed are enlarged. Our implementa-
tions of 3D alignment algorithms are efficient and highly scalable,
which run on GPU clusters. We have tested our implementation with
up to 100 GPUs, achieving up to 43.3 GFLOPS per GPU, and up to
4.2 teraFLOPS for 100 GPUs with limited efficiency loss.
• Scaled Poissonian model(in Paper III): Upon the idea adopted from

Non-negative matrix factorization (NNMF), we solved the Scaled
Poissonian model in the 3D alignment algorithm.
• Uncertainty analysis (in Paper III and Paper IV): We also introduced

a practically applicable computational methodology in the form of
bootstrap procedures for assessing reconstruction uncertainty for the
3D Fourier intensity and the Real-space objects. The radial plots of
the 3D uncertainties can be considered as a new way to determine
the resolution.
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• FXI data analysis pipeline (Paper IV): With the methods proposed
in [Paper I – Paper III], we proposed a multi-steps pipeline to handle
FXI data efficiently and robustly. We also suggested ways to handle
background noise and signal leakage of the 3D Fourier intensity.
• PR772 virus structure (Paper IV): As a demonstration of our data

analysis pipeline, we produced the electron densities from an FXI
experiment of the PR772 virus [75]. The results show the PR772 struc-
ture derivates from an ideal icosahedral symmetry, and the obtained
resolution was above the detector-edge resolution (11.6 nm). How-
ever, we argue that higher resolution diffraction frames are needed
for studying the internal structures of the PR772, as 11.6 nm is far
away from an atomic resolution.
To achieve 5-Å resolution or better, there are still many challenges

lay ahead for FXI. Researchers and technicians have made great efforts
in technical issues, such as detectors, sample delivery, pulse duration,
XFEL repetition rate, etc, and they are continuously improving them.
On the other hand, the improvements in data analysis methods such as
classification, hit-finding, data sharing, 3D orientation determination,
and uncertainty analysis, etc, are also in progress. With our work,
we improved the efficiency, robustness, and accuracy of the FXI data
analysis, and we hope that we can obtain the 3D electron density during
the FXI experiment along with the appropriate uncertainty analysis in
the near future.
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Summary in Swedish

Hur små saker man kan observera begränsas fundamentalt av vågläng-
den på det ljus man använder. Därför är också undersökningar med ko-
rtvågig röntgenstrålning så populär i studier av biomolekylstrukturer.
Men röntgenstrålning interagerar svagt med materien och således kan
klassiska röntgeninstrument i vanliga laboratorium inte bestämma struk-
turen av små enstaka biomolekyler, såsom proteiner, DNA, virus, och
liknande.

Med den moderna röntgenlasertekniken (“X-ray free-electron laser,
XFEL”) [55, 60] är det teoretiskt möjligt att avbilda enstaka molekyler.
Strategin kallas “diffraktion och förstör” och använder XFEL-röntgen-
pulser för att skapa diffraktionssignaler innan proverna förstörs [66].
Strategin har fått stor uppmärksamhet inom strukturell biologi [39, 13,
9, 45, 26].

Den senaste metodologin baserad på idén med “diffraktion och
förstör” kallas Flash X-ray single-particle diffraction imaging (FXI),
eller ibland X-ray Single-Particle Imaging (SPI) [3]. I ett FXI-experiment
injicerar man en ström av partiklar i röntgenstrålen, och sedan samverkar
provmolekylerna med de extremt intensiva röntgenpulserna, vilket ger
tvådimensionella diffraktionsmönster som visar de upplysta föremålen
under olika slumpmässiga orienteringar. På grund av den höga rep-
etitionsfrekvensen för XFEL och den slumpmässiga egenskapen hos
FXI har avläsningarna från de digitala detektorerna olika kvalitéer,
och en stor del av utdata består helt enkelt av tomma mönster utan
någon spridning från provpartiklarna. Vi får också en betydande
mängd spridningar från föroreningar och från prov som innehåller
flera provpartiklar samtidigt. De mest intressanta avläsningarna är
tydliga diffraktionsmönster från en ensam partikel, men tyvärr tillhör
inte de flesta av avläsningarna denna klass. Vidare är avläsningarna
från digitala detektorer intensiteter som inte innehåller någon fasinfor-
mation och dessutom beror på den strålintensitet provet utsattes för.
Båda dessa storheter måste skattas innan partikeln kan återskapas.

Eftersom FXI studerar relativt små provpartiklar och använder diffrak-
tionsintensiteter från fjärrfältet, kan diffraktionsmönstret från detektor-
erna betraktas som kontinuerliga signaler från Fourier-domänen. Över-
sampling används som en teknik för att återskapa fasinformationen [62,
31, 78, 61]. Eftersom många biologiska partiklar finns i praktiskt taget
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identiska kopior vid de relevanta upplösningsskalorna kan de tvådi-
mensionella diffraktionsmönstren behandlas som olika orienterade ex-
poneringar av samma partikel. Följdaktligen kan den tredimensionella
strukturen erhållas genom medelvärden av 2D-diffraktionsmönster givet
att partikelorienteringarna kan skattas. För att sedan få tredimen-
sionella bilder av provpartikeln kan vi utföra en tvåstegsprocedur —
rekonstruera 3D Fourier-intensiteten först och bestäm sedan informa-
tion om 3D-fasen [53, 16, 7, 76]. Som ett alternativ är det också möjligt
att kombinera fasalgoritmerna med rotationsbestämningen [22, 48].

Den otroliga höga repetitionsfrekvensen för XFEL gör det möjligt
att ta en enorm mängd diffraktionsbilder, och därför är en robust
automatisk eller halvautomatisk dataanalys med osäkerhetsskattning
nödvändig.

Denna avhandling behandlar följande problem inom FXI-dataanalys:
• Klassificering (i Paper I): FXI-experiment körs i XFEL med höga rep-

etitionshastigheter, och därför är volymen av råbilder för stor för att
manuellt kunna analysera. För att välja högkvalitativa diffraktion-
smönster har vi utvecklat två övervakade maskininlärningsmetoder
som kan klassificera de råa tvådimensionella diffraktionsbilderna.
Båda metoderna har goda paralleliseringsegenskaper och klarar där-
för av att matcha repetitionshastigheten hos XFEL.
• Effektiv 3D-rekonstruktion i Fourierrymden (i Paper II): De insam-

lade diffraktionsmönstren innehåller endast intensitetsvärden, och
informationen om partikelrotationen är inte observerbar. Beräkning-
arna för att bestämma rotationerna och bilda en 3D Fourier-intensitet
är mycket stora. För att kompensera för de brusiga signalerna från
mindre objekt behöver vi behandla ett stort antal diffraktionsmönster
för att skatta rotationerna, och följaktligen blir de beräkningar som
behövs mycket stora. Våra implementeringar är såväl effektiva som
skalbara, och kan köras effektivt på GPU-kluster. Vi har testat vår
implementering med upp till 100 GPU:er, under upp till 43,3 GFLOPS
per GPU, eller upp till 4,2 TFLOPS totalt med en mycket begränsad
effektivitetsförlust.
• Skalad Poisson-modell (i Paper III): Baserat på en idé från algo-

ritmer för icke-negativa matrisfaktoriseringar, lyckades vi ta fram
en algoritm för att skatta en skalad Poisson-modell, en stokastisk
spridningsmodell baserad på första principer. Tidigare har enklare
heuristiska modeller baserade på normalfördelningar varit att före-
dra.
• Osäkerhetsanalys (i Paper III och Paper IV): Vi introducerade en

praktiskt tillämpbar beräkningsmetodik i form av bootstrap-procedurer
för att bedöma rekonstruktionsosäkerhet för 3D Fourier-intensiteten
och för det slutligt rekonstruerade objektet. Denna metodologi är ett
helt nytt sätt att skatta den erhållna upplösningen.
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• PR772-virusstruktur (Paper IV): Som en praktisk demonstration av
vår metodologi för dataanalys, producerade vi elektronstätheten från
ett FXI-experiment med PR772-viruset [75]. Resultaten visar att
PR772-strukturen kan härledas från en idealisk ikosahedral sym-
metri, och den erhållna upplösningen var bättre än upplösningen
dikterad av detektor-kantavståndet (11.6 nm). Vi hävdar dock att hö-
gre upplösning av data behövs för att studera de interna strukturerna
i PR772, eftersom 11.6 nm är långt ifrån en atomär upplösning.
För att uppnå 5 Ångströms upplösning eller bättre finns det fort-

farande många utmaningar för FXI. Forskare och tekniker har gjort
stora ansträngningar i tekniska frågor, såsom detektorer, provlever-
ans, pulsvaraktighet, XFEL-repetitionsfrekvens osv. Och de förbät-
trar dem kontinuerligt. Å andra sidan pågår även förbättringarna i
dataanalysmetoder som klassificering, delning av data, bestämning av
3D-orientering och osäkerhetsanalys osv. Arbetet i den här avhandlin-
gen har lett till förbättringar av effektiviteten, robustheten och nog-
grannheten för FXI-dataanalysen. En förhoppning är att vi i framtiden
kan använda dessa resultat till att snabbt och säkert bestämma nog-
granna tredimensionella elektrondensiteter baserat på data från FXI-
experiment.
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Summary in Chinese

写在最前面： 这是写给老爸老妈，以及不懂英文的亲戚朋友。如需要
了解更具体、更精确的信息，请阅读英文部分。
人眼可观测到的最小的物体的大小是由照射此物体的光线的波长决

定的。所以，可见光只允许人眼观测到大于200纳米的物体。为了观测
更小的物体,我们需要使用波长更短、能量更强的光线。对于生物结构
学来说，波长为1Å的X光射线是一种非常好 的探测光，这是由于1Å几
乎等同于一个原子的大小。 然而X光射线与物 质的交互非常弱，这意
味着单个粒子在实验室X光的照射下不能产生足够强的衍射信号。传统
的结构生物学，通过结晶体来增强信号，这种方法通常被称为X射线结
晶学。 但非常不幸的是，并非所有的粒子都能结晶，这也就是说我们
不能使用X射线结晶学来研究它们。
高速发展的X射线电子激光器技术（X-Ray Free Electron Lasers，

下简称 XFELs）使得使用X光研究单粒子结构变为可能。最新一代
的XFELs技术可以产生极为明亮 的飞秒极激光束。这些激光束可在每
平方微米提供1012个光子，并且其波长 可以短至1Å。这些前提能让高
速电子探测器在样品的原子 核产生显著变化之前捕获到信号，这种方
法被称为“在销毁之前的衍射”（“diffract before destroy”）。
对于瞬时X射线单粒子衍射成像（Flash X-ray single particle diffrac-

tion imaging,下简称FXI）技术而言，XFELs为其提供了波长极短,光子
极密集的X射 线束。FXI使用气体或流体注射器将单粒子注 入X射线
束中，从而产生二维的衍射图。这些图可使用迭代相位检索(iterative
phase retrieval)的方法转化成为二维样本结构图。如若考虑 许多生物
学样本都存在相同的样本，那么从这些样本获取的2维衍射图则可以用
以重构样本的三维结构图。
史上第一个FXI实验是于2009年在德国汉堡的FLASH实验中心（soft

Free electon Laser in Hamber, FLASH） 完成，使用的是人造样品。
而第一个非 人造样品是巨病毒（mimivius)，实验于2011年在美国
的LCLS (LINAC Coherent Light Source）实验中心完成。尽管其二
维重构图的分辨率仅为32 纳米，该研究克服了许多FXI实验上的技术
难题，并成功进行了相位恢复，为后续的研究带来了可借鉴的经验。
随后，其三维重构图也被发布了。虽然其分辨率极差， 但其作者表示
若有足够多足够清晰的衍射图，巨病毒的三维重构图也将变得更为 清
晰。近年来，更多的学者开始参与到FXI实验中。比巨病毒更小更同
构的病毒，如水稻矮缩病毒(Rice Dwarf Virus，RDV)、大肠杆菌噬菌
体PR772(Coli phage PR772)等，也被做为实验样本送入X射线电子束
中，并成功被重绘为3维结构。
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为得到更多更清晰的三维重构图，除却高速发展的XFELs技术，
我们需要考虑如何 更好、更有效地处理这些二维衍射图。最新一代
的XFEL设备(EUXFE)每秒能产生 27000张二维衍射图，每小时可存储
不小于一千万张二维衍射图。如此巨大的数 据量使得数据的储存、转
移、分析等变得十分困难。其次，当前的三维重构算法 需要非常大的
计算量，这是由于算法需要将单张二维衍射图置配到一 个巨大的三维
离散空间，而提高分辨率则需要提供更多的二维衍射图。 再次，为了
更好地理解 样本三维重构图，我们需要量化地分析三维重构的不确定
性。最后，当前的数据 分析全部基于已被存储于硬盘的衍射数据，而
大量的无效或低质量数据充斥于这 些储存数据中。因此，使用图像处
理方法直接从探测器获得的信号中挑选优质数 据，并用于三维重构是
一项极有意议的工作。
此博士论文将分篇论述以上XFI数据分析面临的挑战。
1. 从探测信号中挑选优质数据（Paper I)
正如前文所提，高速发展的自由电子X射线技术将为每小时产生数以

万计的数据 提供可能性。为了从这些数据中提取高质量的单粒子的衍
射图，我们在 Paper I中提供了两种不同的分类器：本征分类器与可能
性分类器。这两种方 法都是基于模板的分类方法。本征分类器使用了
特征分解(Eigendecomposition）的方式对模板进行训练，后使用其训
练结果(模板的特征值与特征向量)对新的衍射图进行分类。可能性分类
器则通过计算衍射图属于某一模板的可能性程度进行 分类。这两种分
类方法都极其有效与准确。前者在模板不变更的情况下平均分类 速度
更快，而后者则更加灵活，模板变更并不影响其训别速率。

2. 分布式三维重构（Paper II)使用三维重构算法重绘粒子三维结构
需要极大 的计算量，使用单显卡进行计算已无法满足我们日益增长的
计算量。为此我们通过使用信息传递介面（Message passing Interface,
MPI）将数据平均地分布到不同服务器的多个显卡（GPU）中,并将运
算结果同步回主服务器,这种主从结构能够最大限度地保证主服务器对
其从属的控制并最可能地减少数据传输.在 Paper II中,我们使用了主从
结构的分布求计算。值得一提是,我们在最多100个显卡(GPUs）中进行
计算,其效率基本上达到了线性增长.

3. 三维重构的不确定性量化分析（Paper III)
在追求更精确的三维重构的过程中，不确定性的理化分析是重要且

不容忽视的一 部分。这是因为通过分析三维重构过程的不确定性，可
以有效地发现算法漏洞并提升算法的准确性。
在Paper III中，我们分离算法中使用的变量并对它们对算法结果地

影响逐个进行分析，通过模拟数据确定了算法精确度瓶颈。
而对于实际数据，我们应用自助法(Bootstrap methods)于三维重构

算法，通过 对衍射图进行自助抽样与重构。我们可以研究重构图的
均值与方差，从而达到定 量分析重构图不确定性的目的。 在Paper
III中，我们提出了延展式泊松分布(scaled Poisson model)，并使用非
负矩阵分解(Non-negative matrix factorization)。

4. 即时重构（Paper IV)
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以上三篇论文为那时重构提供的理论与实践基础.那时重构意味着粒
子被X射线照 射瞬间产生的衍射图将立即被重构,也就是说，我们有望
输入粒子到X射线机中的同时得到其三维重构图。这个过程分为在衍射
图被探测器捕莸之后分为以下步骤：

i.由分类算法对捕获信息进行分类。
ii.将分类后的衍射图应用于三维重构算法。
iii.将三维重构从倒易（傅立叶）空间(recipical/Fourier domain)转换

到正格空间(real domain)。
iv).控制及测量重构的不确定性。
使用上述步骤，我们成功地重构PR772病毒的三维结构。
在获取5埃格斯特朗（5Å）或者更好的单粒子结构的路上，我们依

然面临着诸多挑战。研究人员及工程师在FXI技术领域的诸多方面做出
了杰出的贡献，例如检测器，样品输送，脉冲持续时间，XFEL重复率
等。另一方面，数据科学家和数据工程师也在不断地改进FXI数据分析
算法的各个方面，例如：分类，数据共享，三维结构重构和不确定性分
析等数据分析方法等。通过我们的工作，我们提高了FXI数据分析的效
率和准确性。我们希望在未来我们的工作可以在FXI实验期间获得三维
样品电子密度。
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